
Requirements Engineering III

Lecture 8

SWE 205: Introduction to Software Engineering

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Project Management

• Refactoring

• Ethical Issues

Lecture Objectives

3

Software Requirement Document

Requirements Specification
- Natural Language Specification

- Structured Specification

The requirements engineering process

4

Feasibility Study

Feasibility

Study

Requirements

Specification

Requirements

Elicitation and

Analysis

Requirements

Validation

User and System

Requirements

Requirements

Document

System Models

Software requirements document

 The software requirements document is the official statement of

what is required of the system developers.

 Should include both a definition of user requirements and a

specification of the system requirements.

 It is NOT a design document. As far as possible, it should set

WHAT the system should do rather than HOW it should do it.

5

Users of a requirements document

Requirements document variability

 Information in requirements document depends on the type of

system and the approach to development used.

 Systems developed incrementally will, typically, have less detail

in the requirements document.

 Requirements documents standards have been designed e.g.

IEEE standard. These are mostly applicable to the requirements

for large systems engineering projects.

7

Requirements specification

 The process of writing the user and system requirements in a

requirements document.

 User requirements have to be understandable by end-users

and customers who do not have a technical background.

 System requirements are more detailed requirements and may

include more technical information.

 The requirements may be part of a contract for the system

development
- It is therefore important that these are as complete as possible.

8

9

Notation Description

Natural

language

The requirements are written using numbered

sentences in natural language. Each sentence

should express one requirement.

Structured

natural

language

The requirements are written in natural language on

a standard form or template. Each field provides

information about an aspect of the requirement.

Design

description

languages

This approach uses a language like a programming

language, but with more abstract features to specify

the requirements by defining an operational model of

the system. This approach is now rarely used although

it can be useful for interface specifications.

Ways of writing a system requirements specification

Ways of writing a system requirements specification

10

Notation Description

Graphical

notations

Graphical models, supplemented by text

annotations, are used to define the functional

requirements for the system; UML use case and

sequence diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts

such as finite-state machines or sets. Although these

unambiguous specifications can reduce the ambiguity

in a requirements document, most customers don’t

understand a formal specification. They cannot

check that it represents what they want and are

reluctant to accept it as a system contract

Requirements and design

 In principle, requirements should state what the system
should do and the design should describe how it does this.

 In practice, requirements and design are inseparable

- A system architecture may be designed to structure the requirements

- The use of a specific architecture to satisfy non-functional
requirements may be a domain requirement

11

Natural Language Specification

 Should describe functional and non-functional

requirements in such a way that they are understandable by

system users who don’t have detailed technical knowledge.

 Usually defined using natural language, tables and diagrams
which can be understood by all users.

12

Problems with natural language

 Lack of clarity
- Precision is difficult without making the document difficult to read.

 Requirements confusion
- Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation
- Several different requirements may be expressed together.

13

Lack of clarity

 Problems arise when requirements are not precisely stated.

(Ambiguous Requirements)

 For example, what does the following mean?

“With your meal you have a choice of soup or salad and rice”

 For example, the term ‘appropriate viewers’
- User intention - special purpose viewer for each different document type

- Developer interpretation - Provide a text viewer that shows the contents of

the document.

14

Requirements amalgamation

15

How to make requirements clear?

 Associate a rationale with each user requirement

 Use a standard format

 Use language consistently
- “Shall”  mandatory (indicates a requirement that is contractually

binding, meaning it must be implemented)

- “Should”  desirable/recommended

 Use text highlighting (bold, italic or colour)

16

17

Requirements completeness and consistency

 Complete
- They should include descriptions of all facilities required.

 Consistent
- There should be no conflicts or contradictions in the descriptions of the

system facilities.

18

In practice, it is impossible to produce

a complete and consistent requirements document.

Requirements interaction

 Conflicts between different requirements are common in complex
systems.

 Example
- R1: After three continues failed login attempts, the account would be

locked by the system.
- R2: Once the account is locked, the system sends an account lock

notification email to the account’s owner.
- R3: Once an account is locked, the system would also send a SMS message

to the account’s owner to notify him about the situation owner.
- R4: If a user has already received a notification via email, he will not

receive the same notification via SMS.

There is a conflict between R2, R3 and R4.

19

Structured specifications

 An approach to writing requirements where the freedom of the

requirements writer is limited and requirements are written in a

standard way.

 This works well for some types of requirements, e.g.,

requirements for embedded control system but is sometimes too

rigid for writing business system requirements.

20

Form-based specifications

1. Definition of the function or entity.

2. Description of inputs and where they come from.

3. Description of outputs and where they go to.

4. Information about the information needed for the computation

and other entities used.

5. Description of the action to be taken.

6. Pre and post conditions (if appropriate).

7. The side effects (if any) of the function.

21

A structured specification of a requirement for

an insulin pump

22

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: safe sugar level.

Description

Computes the dose of insulin to be delivered when the current measured sugar
level is in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2); the previous two readings (r0 and r1).

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose—the dose in insulin to be delivered.

Destination Main control loop.

A structured specification of a requirement for

an insulin pump

23

Tabular specification

 Used to supplement natural language.

 Particularly useful when you have to define a number of possible

alternative courses of action.

 For example, the insulin pump systems bases its computations on

the rate of change of blood sugar level and the tabular

specification explains how to calculate the insulin requirement for

different scenarios.

24

Tabular specification of computation for an insulin pump

25

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of increase

decreasing

((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of increase

stable or increasing

((r2 – r1) ≥ (r1 – r0))

CompDose =

round ((r2 – r1)/4)

If rounded result = 0 then

CompDose = MinimumDose

Key Points

 The software requirements document is an agreed statement of

the system requirements. It should be organized so that both

system customers and software developers can use it.

 Requirements can be written using different methods
- Natural language

- Structured specification

26

Requirements document structure (1/2)

27

Chapter Description

Preface This should define the expected readership of the document and describe its version history,

including a rationale for the creation of a new version and a summary of the changes made in

each version.

Introduction This should describe the need for the system. It should briefly describe the system’s

functions and explain how it will work with other systems. It should also describe how the

system fits into the overall business or strategic objectives of the organization commissioning

the software.

Glossary This should define the technical terms used in the document. You should not make

assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional system

requirements should also be described in this section. This description may use natural

language, diagrams, or other notations that are understandable to customers. Product and

process standards that must be followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system architecture,

showing the distribution of functions across system modules. Architectural components that

are reused should be highlighted.

Requirements document structure (2/2)

28

Chapter Description

System requirements

specification

This should describe the functional and nonfunctional requirements in more detail. If

necessary, further detail may also be added to the nonfunctional requirements. Interfaces

to other systems may be defined.

System models This might include graphical system models showing the relationships between the system

components and the system and its environment. Examples of possible models are object

models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based, and any

anticipated changes due to hardware evolution, changing user needs, and so on. This

section is useful for system designers as it may help them avoid design decisions that

would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the application being

developed; for example, hardware and database descriptions. Hardware requirements

define the minimal and optimal configurations for the system. Database requirements

define the logical organization of the data used by the system and the relationships

between data.

Index Several indexes to the document may be included. As well as a normal alphabetic index,

there may be an index of diagrams, an index of functions, and so on.

Read

29

Chapter 4

References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.

 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.

 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

30

