
Software Construction

Lecture 17

SWE 205: Introduction to Software Engineering



Course Topics
• Introduction
• Software Process Models
• Requirements Engineering 
• Modeling
• Software Construction Techniques 
• Testing
• Project Management
• Refactoring
• Ethical Issues

2



Lecture Objectives

3

Software Construction 
Fundamentals
- Creating Understandable Code
- Source Code Organization
- Code Documentations



Software Construction

 What is Software Construction?
- In general “construction” refers to the hands-on part of creating 

something.

- Software Construction can be defined as detailed creation of working,
meaningful software through a combination of coding, verification, unit 
testing, integration testing, and debugging.

- Construction is also sometimes known as “coding” or “programming.”

4



Introduction

 Software construction closely tied to
- Software design
- Software testing

Design

Construction

Testing

5



Software Construction Activities

Problem 
Definition

Requirements 
Gathering

S/W 
Architecture

Detail 
Design

Coding & 
Debugging
Coding & 

Debugging

Unit 
Testing

Integration

Integration
Testing

System 
Testing

Maintenance

Construction activities 
are shown inside the 
shaded region.

6



Software Construction Fundamentals

 The fundamentals of software construction include:
- Minimizing complexity 

- Anticipating change 

- Constructing for verification 

- Standards in construction

7



Minimizing Complexity

 Humans are severely limited in our ability to hold complex
information in our working memories

 As a result, minimizing complexity is one the of strongest drivers
in software construction

 Need to reduce complexity throughout the lifecycle

 As functionality increases, so does complexity

8



Minimizing Complexity

 Accomplished through use of standards

 Examples:
- J2EE for complex, distributed Java applications
- UML for modeling all aspects of complex systems
- High-level programming languages such as C++ and Java
- Source code formatting rules to aid readability

9



Anticipating Change

 Software changes over time

 Anticipation of change affect how software is constructed

 This can effect
- Use of control structures
- Handling of errors
- Source code organization
- Code documentation
- Coding standards

10



Constructing for verification 

 Construct software that allows bugs to be easily found and fixed

 Examples:
- Enforce coding standards 

• Helps support code reviews
- Unit testing
- Organizing code to support automated testing
- Restricted use of complex or hard-to-understand language structures

11



Reuse

 In software construction, typical assets that are reused include
libraries, modules, components, source code, and commercial off-
the-shelf (COTS) assets.

 Reuse is best practiced systematically, according to a well-defined,
repeatable process.

 Systematic reuse can enable significant software productivity,
quality, and cost improvements.

12



Standards in Construction

 Standards which directly affect construction issues include:
- Programming languages

• E.g. standards for languages like Java and C++

- Communication methods 
• E.g. standards for document formats and contents

- Platforms
• E.g. programmer interface standards for operating system calls, J2EE

- Tools
• E.g. diagrammatic standards for notations like the Unified Modeling Language

13



Software Construction Metaphor

 The letter-writing metaphor suggests that the software process relies
on expensive trial and error rather than careful planning and
design.

14



1/3 Creating Understandable Code

 Naming

 Source Code
Layout

15



Source Code Layout

 Layout Techniques
- White Space

• Usewhitespacetoenhancereadability

- Grouping
• Paragraph of code should contain statements that accomplish a single task and that are 

related to each other

- Blank lines
• Separate unrelated statements from each other using blank line.

- Indentation
• Use indentation to show the logical structure of a program.

- Parenthesis
• Use parentheses to clarify expressions that involve more than two terms to add clarity.

16



Naming Mechanism

 Previous Example with Meaningful Names

 Naming is a tedious job.

 But Naming Conventions help when
- Multiple programmers are working on a project
- You plan to turn a program over to another programmer for modifications 

and maintenance
- Your program is so large that you can’t hold the whole thing in your mind 

at once and must think about it in pieces
- You have a lot of unusual terms that are common on a project and want to 

have standard terms or abbreviations to use in coding

17



Naming Mechanism

 Name fully and accurately describe the entity the variable
represents.
- A variable that contains the current interest rate is better named rate or 

interestRate than r or x.

 Follow Language-Specific Conventions
- For example in Java

• i and j are integer indexes
• Constants are in ALL_CAPS separated by underscores
• Class and interface names capitalize the first letter of each word, including the first—for 

example, ClassOrInterfaceName.
• Variable and method names use lowercase for the first word, with the first letter of each 

following word capitalized—for example, variableOrRoutineName.

18



2/3: Source Code Organization

 Typically organized into statements, methods, classes and
packages.

 Important questions is when to create a method, a class or a
package.

19



2/3: Source Code Organization (cont.)

 When to create a Method?
- Reduce complexity
- Make a section of code readable
- Avoid duplicate code
- Improve performance

 When to create a Class?
- You can hide implementation details
- Changes don’t affect the whole program
- You don’t have to pass data all over your program
- You’re able to work with real-world entities rather than with low-level 

implementation structures

20



3/3 Code Documentation

 Why people don’t write comments?
- They think their code is clearer than it could possibly be.
- They think that other programmers are far more interested in their code 

than they really are.
- They are lazy.
- They are afraid someone else might figure out how their code works.

21



3/3 Code Documentation (cont.)

 Explain the code’s intent or summarize what the code does,
rather than just repeating the code

 Avoid end line comments
- They make the statement lengthier and intermingle with the code
- Use end line comments only with data declarations

 Comments should focus on why rather than how.

 Avoid redundant, extraneous and self-indulgent comments.

 Avoid abbreviations in comments

22



3/3 Code Documentation (cont.)

 Use commenting style that allows comments to be easily modified

 Keep comments clear, correct and up to date.

 Finally – the beginning of a file, class and a routine should always
be commented with its purpose.

23



24

Example of code comments !!



Code Documentation: javadoc

 javadoc.exe: documentation tools can be very handy

25



Code Documentation: javadoc output 
26

Image.htm



Key Points

 Software Construction Techniques
- Creating Understandable Code

• Source Code Layout
• Naming Mechanism

- Source Code Organization
• Methods
• Classes

- Code Documentation 

27



References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.
 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

28



Course Topics
• Introduction
• Software Process Models
• Requirements Engineering 
• Modeling
• Software Construction Techniques 
• Testing
• Project Management
• Refactoring
• Ethical Issues

29


	Software Construction
	Course Topics
	Slide Number 3
	Software Construction
	Introduction
	Software Construction Activities
	Software Construction Fundamentals
	Minimizing Complexity
	Minimizing Complexity
	Anticipating Change
	Constructing for verification 
	Reuse
	Standards in Construction
	Software Construction Metaphor
	1/3 Creating Understandable Code	
	 Source Code Layout
	Naming Mechanism
	Naming Mechanism
	2/3: Source Code Organization
	2/3: Source Code Organization (cont.)
	3/3 Code Documentation
	3/3 Code Documentation (cont.)
	3/3 Code Documentation (cont.)
	Slide Number 24
	Code Documentation: javadoc 
	Code Documentation: javadoc output 
	Key Points
	References
	Course Topics

