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Course Topics
• Introduction
• Software Process Models
• Requirements Engineering 
• Modeling
• Software Construction Techniques 
• Testing
• Project Management
• Refactoring
• Ethical Issues



Lecture Objectives
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To know what is Functional
Programming

To know about Haskell and
Hugs



Paradigm Vs Methodology
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solve this 
problem?



Imperative 
Programming

Object Oriented 
Programming

C C++ 
Java

More declarative Less declarative

Programming Paradigms
5

Procedural 
Programming

Declarative 
Programming

Functional 
Programming

Logic 
Programming

HASKELL PROLOG

Paradigms



What is Functional Programming?

 Functional programming is style of programming in which the
basic method of computation is the application of functions to
arguments;

 Program viewed as a collection of functions.

 There are no assignments

 Emphasize on simple and clean semantics.

 Examples of languages: Scheme, Miranda, Haskell, ML (meta
language)
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Functional Programming Paradigm

 Design of a functional program is based on mathematical
functions

 Problem Solving = Evaluation of Functions

 A program consists of function calls with appropriate arguments.

 Based on λ-calculus with added constructs for convenience.
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Why is it Useful?

 The abstract nature of functional programming leads to
considerably simpler programs;

 It also supports a number of powerful new ways to structure and
reason about programs.

 Example:
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Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.



Functional Programming Paradigm

 What is a Function?
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Functional Programming Paradigm

 Example: If Function is Square-Root
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Applications of Functional Languages

 LISP is used for artificial intelligence
- Knowledge representation
- Machine learning
- Natural language processing
- Modeling of speech and vision

 Scheme is used to teach introductory programming at a
significant number of universities
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Comparing Fun. and Imp. Languages

 Imperative Languages:
- Efficient execution
- Complex semantics
- Complex syntax
- Concurrency is programmer designed

 Functional Languages:
- Inefficient execution
- Simple semantics
- Simple syntax
- Programs can automatically be made concurrent 
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Hugs : Haskell interpreter

 An interpreter for Haskell, and the most widely used
implementation of the language;

 An interactive system, which is well-suited for teaching and
prototyping purposes;

 Hugs is freely available from:
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www.haskell.org/hugs



Function Application
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Mathematics style         Haskell Style

f(a,b) + c d f  a b + c*d

Functions have higher priority than all other operators.

f  a + b



Examples
15

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y



My First Script

 When developing a Haskell script, it is useful to keep two
windows open, one running an editor for the script, and the other
running Hugs.

 Start an editor, type in the following two function definitions, and
save the script as test.hs:
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double x    = x + x

quadruple x = double (double x)



Example

 Exercise: Write a program to compute the sum of N numbers,
where N is provided by the User?
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Imperative Solution Vs Functional
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main ()
{

}

sum = 0;

for (i =0; i < n; i++)
{

}

sum = sum + i

Now how to solve using
Functional paradigm

func sum(n:int) : int;
{

In Functional programming
Always think about value 
And their expected output

No State – so 
remove this

if n = 0 
then  0

No Loops –
replace with a 
function

else 
n + sum(n-1)

end;

RECURSION



Imperative     Vs Functional
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Example: Factorial

 As we have seen, many functions can naturally be defined in
terms of other functions.
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factorial  :: Int → Int

factorial n = product [1..n]



Example: Factorial

 Expressions are evaluated by a stepwise process of applying
functions to their arguments.

 For example:
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factorial 3

product [1..3]
=

product [1,2,3]

1*2*3
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Recursive Functions

 In Haskell, functions can also be defined in terms of themselves.
Such functions are called recursive.

22

factorial 0 = 1

factorial n = n * factorial (n-1)



For example:
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factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=



Quicksort

 The quicksort algorithm for sorting a list of integers can be
specified by the following two rules:

 The empty list is already sorted;

 Non-empty lists can be sorted by sorting the tail values <= the
head, sorting the tail values > the head, and then appending the
resulting lists on either side of the head value.
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Quicksort Algorithm:
https://www.youtube.com/watch?v=8hHWpuAPBHo

https://www.youtube.com/watch?v=8hHWpuAPBHo


Quicksort

 Using recursion, this specification can be translated directly into
an implementation:

 ++ operator is used to concatenate two arrays/lists.
 This is probably the simplest implementation of quicksort in any

programming language!
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qsort :: [Int] → [Int]

qsort []     = []

qsort (x:xs) = qsort [a | a ← xs, a ≤ x]

++ [x] ++

qsort [b | b ← xs, b > x]



Quicksort: How to read each line
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qsort :: [Int] → [Int]

qsort []     = []

The result of  sorting an empty list (written []) is an empty list
qsort (x:xs) = qsort [a | a ← xs, a ≤ x]

++ [x] ++

qsort [b | b ← xs, b > x]

To sort a list whose first element is x and the rest of  which is called xs, 
just sort all the elements of  xs which are less than x, 
sort all the elements of  xs which are greater than x, 
and concatenate (++) the results, with x sandwiched in the middle.
qsort [a | a ← xs, a ≤ x]

The list of  all a's such that a is drawn from the list xs, and a is less than x



For example (abbreviating qsort as q)
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q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5][4][3][2]



Key Points

 Programming Paradigms
- Declarative and Imperative

 Functional Programming Paradigm
- the basic method of computation is the application of functions to 

arguments

 Functional programming leads to considerably simpler programs
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