lution

client ===
upgrade O software feabure
¢/) commercial p'}oc‘é%s data Instruction arct;uct’ielggrw;%er

Iabformdeplogmenu fbware englneerlng
programmung ool oo

development_ & Ce,ﬁé‘;%?e’l‘,malnbenancecosysbem

:,..b,aryappllcablon ._cochngf.} bOpblmlzablOn debugger [5 2’ utility

open source procedure D=
o S VENAOr B doveloperd rtiymemaat ooz o

securiby Step

framework
database

engineerin 3 operablng sgsbem
algoribhmM O seerives £ = fampmresine § e
bgpe aubhonzamono WIOgIC informabion 8 °
reqyiirements y approach. 3 reporbexecutions £
firmware = s erificabion jinker §. 5
£

(=]

specf

SWE 205: Introduction to Software Engineering

Lecture 5

Software Processes 111

Course Topics

+ Intreoduction

* Software Process Models

* Requirements Engineering

* Modeling

* Programming Languages

* Software Construction Techniques
* Testing

* Project Management

* Refactoring

* Ethical Issues

Lecture Objectives

v Coping with Change
- Prototyping
- Incremental delivery
- Spiral Model

v’ Rational Unified Process
‘/Hybrid Process Models

\/Agile Methods

Review

Waterfall

Process Models

Reuse-based

Process Activities

1- Specification
2- Development
3- Validation

4- Evolution

Coping with change

® Change is inevitable in all large software projects.

- Business changes lead to new and changed system requirements

- New technologies open up new possibilities for improving
implementations

- Changing platforms require application changes

® Change leads to rework so the costs of change include both
rework (e.g. re-analyzing requirements) as well as the costs of
implementing new functionality.

Reducing the costs of rework

" Change anticipation, where the software process includes
activities that can anticipate possible changes before significant

rework 1s required.
- For example, a prototype system may be developed to show some key
features of the system to customers.

® Change tolerance, where the process is designed so that changes

can be accommodated at relatively low cost.

- 'This normally involves some form of incremental development. Proposed
changes may be implemented in increments that have not yet been
developed. If this 1s impossible, then only a single increment (a small part
of the system) may have to be altered to incorporate the change.

® Two ways to cope with change:
- System prototyping
- Incremental delivery

Prototyping

" A prototype is an initial version of a system used to demonstrate
concepts and try out design options.

" A prototype can be used in:

- 'The requirements engineering process to help with requirements elicitation
and validation
- In design processes to explore options and develop a Ul design

Prototype development

® May involve leaving out functionality

- Prototype should focus on areas of the product that are not well-
understood

- Error checking and recovery may not be included in the prototype

- Focus on functional rather than non-functional requirements such as

reliability and security

The process of prototype development

Establish Define
Prototype Prototype
Objectives Functionality

li
Prototype Plan Out e FAECute Evaluate Report
Definition Prototype

Develop Evaluate
Prototype Prototype

Benefits of Prototyping

Improved system usability.

A closer match to users’ real needs.
Improved design quality.
Improved maintainability.

Reduced development effort.

11

Prototype development

(I W Travetone - Amwe P Prm & | Loensed o hure Sofoware 50

Ele [t ihew Mieebame Qtject Jakle Jearste Juee Help
Q&FE & v 'HH .
= =0 =

" May be based on rapld prototyping languages or tools s

_ S
e —lc - nome ... Suntn G Semin (eme

[~] i : T . -m--m:,"_,m_ o
‘-1,::';*;:) T‘A M\Ifl r'I;faveI Site = aXUre

Sk B B | S cove Edki cone | Dlede case
. Taghrse (TEC) [[Seerch |
E A o e 1 Ay - &l Finlds ¥
JHome Packsges Flights Hotels Cralses | | e 20 Cagtomge
) Purchuse] ® Satndcation
L e 1 Welcome! e St dw'h:mmr
- FRabun
R —]] oo
—] Ao [rawm) ca) rgw —— S— s
. 2 & Flight + Hatel | I Impertans
H == 1 Flaght + Hotel + Caw Eon
(T B Risk
: Low
| == al B Fooen Sashiay
Redwige Paostie Bne |
Targes eles
. Ta:
_— ==] Appsgnad T

A m J | |mevesry atic
Crzpla Lat Bex Chebsckbien 1
1 Betum
® — | |g |
Flade Bufon ouois Vedcs Lrae 1
L B Traewlirs 1 = b
Ess———]]
LASSSSS 1 'F Lovem ipsum dolor sl amet. consectebusr adipiscing el LT sed mauris. Asnean sagitis. anle
7 Maegaten
L
Fstes
Terpiste TEFBLE
= o By Wiy Page Kobes - Delasht ¥ Page [nberschions
& B Thes is thet hormel page whbis Tt US8T CcOmas Brst 10 resanve they = A cage Etcase Delee cide

Rl raetal ca, wecir Baght

Afoayee pomplate Iefe &3% topc IRE width B0 height JBO

Throw-away prototypes

Prototype + Extra stuff = Final System

Yes/ No? Why?

13

Throw-away prototypes

" Prototypes should be discarded after development as they are not
a good basis for a production system:

1. It may be impossible to tune the system to meet non-functional
requirements
2. Prototypes are normally undocumented

9

The prototype structure 1s usually degraded through rapid change
4. 'The prototype probably will not meet normal organizational quality
standards

14

Prototyping

" Problems

- It may be impossible to tune the prototype to meet non-functional
requirements,

- Changes degrades the system structure.

- Prototype is undocumented.

- Special skills (e.g. in languages for rapid prototyping) may be required

" Applicability

- For small or medium-size interactive systems
- For parts of large systems (e.g. the user interface)
- For short-lifetime systems

Incremental Delivery

® Rather than deliver the system as a single delivery, the
development and delivery 1s broken down into increments with
cach increment delivering part of the required functionality.

" User requirements are prioritised and the highest priority
requirements are included in early increments.

® Once the development of an increment is started, the
requirements for the services to be delivered in the first increment
are defined in detail. Further requirements for later increments
can continue to evolve.

16

Incremental Delivery

Define Outline Assign Requirements Design System Develop System
Requirements to Increments Architecture Increment
System
. Incomplete?
Validate Integrate Deploy
Increment Increment Increment
Final
System

17

Incremental Delivery

® Advantages
- Customers can use the early increments as prototypes and gain experience
that informs their requirements for later system increments.
- Customers do not have to wait until the entire system is delivered
- Easy to incorporate changes into the system.
- As the highest-priority services are delivered first and increments then
integrated, the most important system services receive the most testing

" Issues
- Iterative development can also be difficult when a replacement system is
being developed.
- Contflicts with the procurement model of many organizations, where the
complete system specification is part of the system development contract.

Boehm’s spiral model

® Risk-driven development process
- proposed by Boehm in 1988

Process 1s represented as a spiral rather than as a sequence of
activities with backtracking.

® Each loop in the spiral represents a phase in the process.

® No fixed phases such as specification or design - loops in the
spiral are chosen depending on what is required.

® Risks are explicitly assessed and resolved throughout the process.

19

Determine objectives,
alternatives an
constrajats

Evaluate alternatives,
i ify, resolve risks

Risk
analysis
Risk
analysis
Risk
analysis iptzies
Prototype 3 tional
Prototype 2 protoype
Risk brot
analysis | 0t0"
REVIEW |P"V™™ | pe g |
Requirements plan Simulations, models, benchmarks

Life-cycle plan Concept of

Operation S/W

requirements / Product _
design Detailed
Development Requirement design
plan validation Code
' Unit test
Integration Design _
and test plan vav Integration
Acceptance b
Service test Develop, verify

next-level product

20

Spiral model — Typical Traversal

“ Identify the objectives, alternatives or constraints for each cycle of
the spiral.

® Evaluate the alternative relative to the objectives and constraints.
- In this step, many of the risks are identified and evaluated.

“ Depending on the amount of and type of identitied risks,
- Develop a prototype, more detailed evaluation,
- An evolutionary development, or some other step to further reduce the risk
of achieving the identified objective.
- On the other hand, if risk is substantially reduced, the next step may just be
a task such as requirements, design or code.

® Validate the achievement of the objective and plan for next cycle.

Spiral model usage

" Spiral model has been very influential in helping people think
about iteration in software processes and introducing the risk-
driven approach to development.

® In practice, however, the model is rarely used as published for
practical software development.

The Rational Unified Process ‘ ' RUP

Ratlonal Unified Process*

® Modern process model
- Closely aligned with the Unified Modeling Language (UML).

B “Use-case” driven
" Architecture-centric
® Iterative and incremental software process

® Intended for large-scale applications where robustness, scalability,

and extensibility are mandatory
- Telecommunication, financial services, transportation, etc.

The Rational Unified Process ‘ ' RUP

Rat:onal Unified Process*

Elaboration

Construction

Release Transition

l software increment I

Production

RUP—Dynamic Perspective ‘ ' RUP

Rational Unified Process*®

" Phase Model

C Phase iteration
e ——

Inception Elaboration Construction Transition

25 RUP Phases ‘ ' RUP

Rational Unified Process*®

Inception
- Establish the business case for the system {Identifies the External Entities
that interact with the system}.

® Elaboration
- Develop an understanding of the problem domain and the system
architecture {Results in requirements model, architectural description, and
a development plan}.

" Construction
- System design, programming, and testing {Results in a working software
system and associated documentation that ready for delivery to the user§.
O

Transition
- Deploy the system in its operating environment {Results in a documented
software system that is working correctly in its operational environment .

RUP Phases \ ’ RUP

Rational Unified Process*

UP Phases

Inception Elaboration Construction Transition Production

Workflows

Requirements

Analysis

Design

Implementation

Test
Suppor AT
Iterations #1 #2 #n-1 | #n
Inception Elaboration Construction Transition
preliminary | peration | keration H:emtl-:-n keration | keration temtln:-n keration
teration (s) #1 W2 En+l | #n+2 Emi+1

A f///'/',/,’/’:’”*;:
N\ =

Heleases

RUP good practice ‘ ' RUP

Ratlonal Unified Process*

® Develop software iteratively

“ Manage requirements

® Use component-based architectures

" Visually model software

" Verity software quality

® Control changes to software

28

Hybrid Process Models

® Large systems are usually made up of several sub-systems

® The same process model need not be used for all subsystems

- Prototyping for high-risk specifications
- Waterfall model for well-understood developments

Agile Methods

eXtreme Programming (XP) | Scrum

Crystal

DSDM
Kanban |- FDD Lean

Agile methods: Extreme Programming (XP)

® Three to ten programmers working at one location.
® One or more customers are on site.

® Development occurs in frequent builds or iterations, each of
which is releasable and delivers incremental user functionality.

® The unit of requirements gathering is the user story, a chunk of
functionality that provides value to the user. User stories are
written by the customers on site.

Agile Methods: XP Principles Characteristics

" Programmers work in pairs and follow strict coding
standards. They do their own unit testing and are
supposed to routinely refactor the code to keep the
design simple.

" Since little attempt 1s made to understand or document
future requirements, the code is constantly refactored
(redesigned) to address changing user needs.

Agile Methods: Extreme Programming (XP)

I
T
WE NEED USE “Dﬁgégﬂﬁﬂﬁ“g“&iﬁ FIND ME SOME
THREE MORE AGILE T Mo L vERy WORDS THAT DO
PROGRAM— PROGRAM— DOING MORE LWIORK. [MEAN THAT AND
MERS. MING : ASK AGAIN.
) METHODS.

425 22005 Scolt Adama, Inc./Dist. by UFS, Inc,
=rs

www.dilbert.com scoltadamas® acl.com

33

Agile Methods: Scrum

=

Product Sprint Sprint Working
Backlog Backlog Increment of
Software

" Work is done in “sprints,” which are timeboxed iterations of a
fixed 30 days or fewer duration.

® Work within a sprint is fixed. Once the scope of a sprint is

committed, no additional functionality can be added, except by the
development team.

Key points

® Processes should include activities to cope with change. This may
involve a prototyping phase that helps avoid poor decisions on
requirements and design.

® Processes may be structured for iterative development and
delivery so that changes may be made without disrupting the
system as a whole.

35

Read

gy

mﬂl‘
LTt

Software Engineering
'/I'anﬂso'.“;r;iylle s, L) &

% !/ N =Y/

ALWAYS LEARNING PEARSON

Chapter 2 and Chapter 3

36

References

= Tan Sommetrville, “Software Engineering”, 10® Edition, Addison-Wesley, 2015.

= Timothy C. Lethbridge and Robert Laganicre, “Object-Oriented Software Engineering: Practical
Software Development using UML and Java”, 27 Edition, McGraw Hill, 2001.

= R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,
2005.

Next

Chapter 4 Requirements Engineering

Course Topics

+—Introduetion

+Seftware Process Meodels

* Requirements Engineering

* Modeling

* Programming Languages

* Software Construction Techniques
* Testing

* Project Management

* Refactoring

* Ethical Issues

