
Programming Paradigms
Functional Programming

Lecture 15

SWE 205: Introduction to Software Engineering

Course Topics
• Introduction
• Software Process Models
• Requirements Engineering
• Modeling
• Software Construction Techniques
• Testing
• Project Management
• Refactoring
• Ethical Issues

Lecture Objectives

3

To know what is Functional
Programming

To know about Haskell and
Hugs

Paradigm Vs Methodology
4

Programming

Programming
Paradigms

Programming
Methodology

What are my
available
options?

How do I
solve this
problem?

Imperative
Programming

Object Oriented
Programming

C C++
Java

More declarative Less declarative

Programming Paradigms
5

Procedural
Programming

Declarative
Programming

Functional
Programming

Logic
Programming

HASKELL PROLOG

Paradigms

What is Functional Programming?

 Functional programming is style of programming in which the
basic method of computation is the application of functions to
arguments;

 Program viewed as a collection of functions.

 There are no assignments

 Emphasize on simple and clean semantics.

 Examples of languages: Scheme, Miranda, Haskell, ML (meta
language)

6

Functional Programming Paradigm

 Design of a functional program is based on mathematical
functions

 Problem Solving = Evaluation of Functions

 A program consists of function calls with appropriate arguments.

 Based on λ-calculus with added constructs for convenience.

7

Why is it Useful?

 The abstract nature of functional programming leads to
considerably simpler programs;

 It also supports a number of powerful new ways to structure and
reason about programs.

 Example:

8

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.

Functional Programming Paradigm

 What is a Function?

9

.

.

.
*
*

Domain Range

Function is a
mapping of

members of one set
to another set

Functional Programming Paradigm

 Example: If Function is Square-Root

10

9

.

.
3
*

N N

A Function can
never have

One-to-many
mapping

Applications of Functional Languages

 LISP is used for artificial intelligence
- Knowledge representation
- Machine learning
- Natural language processing
- Modeling of speech and vision

 Scheme is used to teach introductory programming at a
significant number of universities

11

Comparing Fun. and Imp. Languages

 Imperative Languages:
- Efficient execution
- Complex semantics
- Complex syntax
- Concurrency is programmer designed

 Functional Languages:
- Inefficient execution
- Simple semantics
- Simple syntax
- Programs can automatically be made concurrent

12

Hugs : Haskell interpreter

 An interpreter for Haskell, and the most widely used
implementation of the language;

 An interactive system, which is well-suited for teaching and
prototyping purposes;

 Hugs is freely available from:

13

www.haskell.org/hugs

Function Application
14

Mathematics style Haskell Style

f(a,b) + c d f a b + c*d

Functions have higher priority than all other operators.

f a + b

Examples
15

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

My First Script

 When developing a Haskell script, it is useful to keep two
windows open, one running an editor for the script, and the other
running Hugs.

 Start an editor, type in the following two function definitions, and
save the script as test.hs:

16

double x = x + x

quadruple x = double (double x)

Example

 Exercise: Write a program to compute the sum of N numbers,
where N is provided by the User?

17

Imperative Solution Vs Functional
18

main ()
{

}

sum = 0;

for (i =0; i < n; i++)
{

}

sum = sum + i

Now how to solve using
Functional paradigm

func sum(n:int) : int;
{

In Functional programming
Always think about value
And their expected output

No State – so
remove this

if n = 0
then 0

No Loops –
replace with a
function

else
n + sum(n-1)

end;

RECURSION

Imperative Vs Functional
19

Example: Factorial

 As we have seen, many functions can naturally be defined in
terms of other functions.

20

factorial :: Int → Int

factorial n = product [1..n]

Example: Factorial

 Expressions are evaluated by a stepwise process of applying
functions to their arguments.

 For example:

21

factorial 3

product [1..3]
=

product [1,2,3]

1*2*3

6

=

=

=

Recursive Functions

 In Haskell, functions can also be defined in terms of themselves.
Such functions are called recursive.

22

factorial 0 = 1

factorial n = n * factorial (n-1)

For example:
23

factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=

Quicksort

 The quicksort algorithm for sorting a list of integers can be
specified by the following two rules:

 The empty list is already sorted;

 Non-empty lists can be sorted by sorting the tail values <= the
head, sorting the tail values > the head, and then appending the
resulting lists on either side of the head value.

24

Quicksort Algorithm:
https://www.youtube.com/watch?v=8hHWpuAPBHo

https://www.youtube.com/watch?v=8hHWpuAPBHo

Quicksort

 Using recursion, this specification can be translated directly into
an implementation:

 ++ operator is used to concatenate two arrays/lists.
 This is probably the simplest implementation of quicksort in any

programming language!

25

qsort :: [Int] → [Int]

qsort [] = []

qsort (x:xs) = qsort [a | a ← xs, a ≤ x]

++ [x] ++

qsort [b | b ← xs, b > x]

Quicksort: How to read each line
26

qsort :: [Int] → [Int]

qsort [] = []

The result of sorting an empty list (written []) is an empty list
qsort (x:xs) = qsort [a | a ← xs, a ≤ x]

++ [x] ++

qsort [b | b ← xs, b > x]

To sort a list whose first element is x and the rest of which is called xs,
just sort all the elements of xs which are less than x,
sort all the elements of xs which are greater than x,
and concatenate (++) the results, with x sandwiched in the middle.
qsort [a | a ← xs, a ≤ x]

The list of all a's such that a is drawn from the list xs, and a is less than x

For example (abbreviating qsort as q)
27

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5][4][3][2]

Key Points

 Programming Paradigms
- Declarative and Imperative

 Functional Programming Paradigm
- the basic method of computation is the application of functions to

arguments

 Functional programming leads to considerably simpler programs

28

References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.
 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.
 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

29

	Programming Paradigms�Functional Programming
	Course Topics
	Slide Number 3
	Paradigm Vs Methodology
	Programming Paradigms
	What is Functional Programming?
	Functional Programming Paradigm
	Why is it Useful?
	Functional Programming Paradigm
	Functional Programming Paradigm
	Applications of Functional Languages
	Comparing Fun. and Imp. Languages
	Hugs : Haskell interpreter
	Function Application
	Examples
	My First Script
	Example
	Imperative Solution Vs Functional
	Imperative Vs Functional
	Example: Factorial
	Example: Factorial
	Recursive Functions
	For example:
	Quicksort
	Quicksort
	Quicksort: How to read each line
	For example (abbreviating qsort as q)
	Key Points
	References

