lution

client ===
upgrade O software feabure
¢/) commercial p'}oc‘é%s data Instruction arct;uct’ielggrw;%er

Iabformdeplogmenu fbware englneerlng
programmung ool oo

development_ & Ce,ﬁé‘;%?e’l‘,malnbenancecosysbem

:,..b,aryappllcablon ._cochngf.} bOpblmlzablOn debugger [5 2’ utility

open source procedure D=
o S VENAOr B doveloperd rtiymemaat ooz o

securiby Step

framework
database

engineerin 3 operablng sgsbem
algoribhmM O seerives £ = fampmresine § e
bgpe aubhonzamono WIOgIC informabion 8 °
reqyiirements y approach. 3 reporbexecutions £
firmware = s erificabion jinker §. 5
£

(=]

specf

SWE 205: Introduction to Software Engineering

Lecture 11

Architectural design

Course Topics

+—Introduetion
+Seftware Process Meodels
Rec E oo .
* Modeling
* Programming Languages
* Software Construction Techniques
* Testing
* Project Management

* Refactoring
e FEthical Issues

Lecture Objectives

v’ Architectural design
‘/Architecture Characteristics
‘/4-|— 1 Architectural Views

v Architectural Patterns

Introduction to Design

® Once the requirements of a project are understood, the
transformation of requirements into a design begins.

® This a difficult step that involves the transformation of a set of
intangible (the requirements) into another set of intangible (the

design).

" Software design details with how the software is to be structured
— that 1s, what its components are and how these components are
related to each other.

Introduction to Design

® For a large system, it usually makes sense to divide the design
phases into two parts:

" Architectural design phase

® Detailed design phase

Introduction to Design

® Architectural design phase — This a high-level overview of the
system.

® The main components are listed as well as properties external to
the components and relationships among components.

® The functional and nonfunctional requirements along with
technical consideration provide most of the drive for the
architecture.

Introduction to Design

® Detailed design phase — components are decomposed to a much
finer level of details.

® The architecture and the functional requirements drive this phase.

® The architecture provides general guidance and all functional
requirements have to be addressed by at least one module in the

detailed design.

Relationship between Architecture and Design

Architecture

Requirements

Detailed Design

-~ —
M2)
T -

Relationship between Architecture and Design

Architecture

Detailed Design

Requirements

M2)
— —

b

Most influential requirements may be
nonfunctional requirements, such as
performance an maintainability.

Relationship between Architecture and Design

® Ideally there is a one-to-one mapping between each functional
requirement and a module in the detailed design.

® The architecture drives the detailed design, with the mapping
being ideally from one architectural component to several detailed
modules.

Relationship between Architecture and Design

® Smaller systems may get away with not having an explicit
architecture, although it is usetful in almost all cases.

® In traditional software processes, the ideal is for the design to be

created and documented up to the lowest level of detail possible,
- with the programmers doing mainly translation of that design into actual
code.

12

Architectural Design

® What is software architecture?

- 'The software architecture of a system specifies its basic structure.

- 'The design process for identifying the sub-systems making up a system and
the framework for sub-system control and communication is architectural

design.

- 'The output of this design process 1s a description of the software
architecture.

System Structuring

" Concerned with decomposing the system into interacting sub-
p g y g

systems.

" The architectural design is normally expressed as a block diagram
presenting an overview of the system structure.

® More specific models showing how sub-systems share data, are
distributed and interface with each other may also be developed.

Block Diagrams

" Very abstract
- they do not show the nature of component relationships nor the externally
visible properties of the sub-systems.

" However, useful for communication with stakeholders and for

project planning. Vision
System
® Packing Robot System Object Am Gripper
Identification —— Controller Controller
System
Packaging
Selection
System
i
|
Packing Conveyor
System —— | Controller

15

Architectural Design

® There are several important points to note about the architecture
of a system:

1. Every system has an architecture.
- Whether you make it explicit or not, whether you document it or not, the
system has an architecture.

2. 'There could be more than one structure.
- For large systems, and even many small ones, there i1s more than one
important way the system 1s structured.
- We need to be aware of all those structures, and document them with
several views.

16

Architectural Design

3. Architecture deals with properties external to each module.
- At the architectural level, we should think about the important modules
and how they interact with other modules.
- 'The focus is on the interfaces among modules rather than details
concerning the internals of each module.

Advantages of Explicit Architecture

" Stakeholder communication
- Architecture may be used as a focus of discussion by system stakeholders.

" System analysis
- Means that analysis of whether the system can meet its non-functional
requirements 1s possible.

® Large-scale reuse
- 'The architecture may be reusable across a range of systems.

Architecture Design Decisions (Architecture Characteristics)

¥ Performance

- Localize critical operations and minimize communications. Use large rather
than fine-grain components.

" Security

- Use a layered architecture with critical assets in the inner layers.

" Safety
- Localize safety-critical features in a single component or small number of
components.
" Availability
- Include redundant components and mechanisms for fault tolerance.
® Maintainability

- Use fine-grain, self-contained components, replaceable components.

Architectural Conflicts

» Using large components improves perjormance but reduces
maintainability.

» Introducing redundant data improves araz/abi/ify but makes securiry
more difficult.

» Localizing safe/y-related features — usually means — more
communication so degraded performance.

Architectural Views

® Each architectural model only shows one view or perspective of

the system. It might show

- how a system is decomposed into modules

- how the run-time processes interact

- different ways in which system components are distributed across a
network.

® For both design and documentation, you usually need to present
multiple views of the software architecture.

Architectural Views

" 441 view model of software architecture:

» logical view, which shows the key abstractions in the system as
objects or object classes (relate the system requirements to entities
in this logical view).

» A process view, which shows how, at run-time, the system 1s
composed of interacting processes (useful for making judgments
about non-functional system characteristics).

» A development view, which shows how the software is decomposed
for development (useful for managers and programmers).

» A physical view, which shows the system hardware and how
software components are distributed across the processors in the
system (useful for system deployment).

» Related using use cases or scenarios (+1).

22

“uo

End user

Integrator

vy "

; : Development | Programmers
Logical view viepw & software
managers
Process View Physical View

System Engineer

Architectural patterns

Architecture Patterns

" Stylized, abstract description of good practice.

" Tried and tested in different systems and environments

- Successtul in previous systems

® Includes information on when it 1s and 1s not appropriate to use
that pattern.

® Includes information on the pattern’s strengths and weaknesses.

25

Architecture Patterns Covered

® Client Server Architecture
® Layered Architecture
“ Repository

" Event Driven

Client-Server Architecture

" Application split into client components and server components.

“ Client may connect to more than one server (servers are usually
independent).

o~ Client A “
/ \ / \
/
> P\ » <
ClientB1 ClientB2 ClientC1 ClientC2

Client-Server Architecture

I
® An architecture showing a clear demarcation between clients and
servers, which reside on different nodes in a network.

® Components interact through basic networking protocols.

® Usually there will be many clients accessing the same server.

28

Client-Server Architecture

Name Client-server

Description In a client-server architecture, the system is presented as a set of services, with each service
delivered by a separate server. Clients are users of these services and access servers to make
use of them.

Example Figure 6.13 is an example of a film and video/DVD library organized as a client-server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because

servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure and so is susceptible to denial-of-service attacks
or server failure. Performance may be unpredictable because it depends on the network
as well as the system. Management problems may arise if servers are owned by
different organizations.

29

Client-Server Architecture

® Below architecture is a multi-user, web-based system for

providing a film and photograph library.

|
Y

Internet

| .

Y

Catalogue Video Picture Web
Server Server Server Server
l Library | l ' l | Film and I
Catalogue Film Store Photo Store Photo Info.

30

Layered Architecture

® The layered architecture aims at achieving separation and
independence.

® An architecture in which components are grouped into layers, and
- Components communicate only with other components in the layer
immediately above and below their own layer.

31

Layered Architecture

Description Organizes the system into layers, with related functionality associated with each layer. A layer
provides services to the layer above it, so the lowest level layers represent core services that
are likely to be used throughout the system. See Figure 6.8.

Example A layered model of a digital learning system to support learning of all subjects in schools (Figure 6.9).

When used Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multilevel security.

Advantages Allows replacement of entire layers as long as the interface is maintained. Redundant facilities
(e.g., authentication) can be provided in each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult, and a high-level layer
may have to interact directly with lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple levels of interpretation of a
service request as it is processed at each layer.

32

Generic Layered Architecture

User interface I
User interface management
Authentication and authorization
Core business logic/application functionality
System utilities

System support (OS, database, etc.)

33

Layered Architecture

® The architecture of a Linux System consists of following layers:
- Hardware layer (e.g. RAM/ CPU).
Kernel : it 1s the core component of OS

Shell: an interface to kernel, hiding complexity of kernel's functions.
Utilities: programs that provide the user most of the functionalities of OS.

l”’_—_x
3.

Applications Compilers

/ y \ /sj\ /

Applications,

a.out
/ Kernel

@

34

Layered Architecture

® While layered architecture keeps the components themselves
focused on specific tasks and facilitates the detection of

problems;
- It sometimes presents a performance problem in terms of the number of
layers a message may have to travel through before being processed.

35

Layered Architecture

® Library system (LIBSYS) as a layered architecture.

Web Browser Interface I

LIBSYS Forms and Print
Login Query Manager Manager
Distributed =~ Document Rights Accountin
Search Retrieval Manager 8

Library Index I
DBII‘DB2I‘DB3I‘DB4|‘DBnI

Repository Architecture

® An architecture in which a central database and separate
programs access the database.

® The programs communicate only through the database
- Not directly among themselves.

" A big advantage — it introduces a layer of abstraction for the

database.
- Called a Database Management System (DBMS).

37

Repository Architecture

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repository.

Example Figure 6.11 is an example of an IDE where the components use a repository of system design
information. Each software tool generates information, which is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of information are
generated that has to be stored for a long time. You may also use it in data-driven systems where
the inclusion of data in the repository triggers an action or tool.

Advantages Components can be independent; they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components. All data
can be managed consistently (e.g., backups done at the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.

Repository Architecture

TN
N

Hospital
DB

N

Patient processing

Room Scheduling

Purchasing

Very popular
within the
business

applications

AN

Nurses Scheduling

community

39

Repository Architecture for an IDE

Code
generators

UML
editors

Java
editor

Python

editor

Design
translator

Project
repository

Design Report
analyzer generator

Event-Driven Architecture (Realtime)

® The high level design solution is based on an event dispatcher
which manages events and the functionalities which depends on
those events.

$ Phone]
processing
_> Personal (device) N Txt]

= dispatcher | processing
=
[Image]
keypad processing

Problems that fit this architecture includes real-time systems such as: airplane control;
medical equipment monitor; home monitor; embedded device controller; game; etc.

Event-Driven Architecture Example

® Think of Javar
- Java Swing API

public class FooPanel extends JPanel implements ActionListener {
public FooPanel() {

super();

JButton btn = new JButton("Click Me!");
btn.addActionListener(this);

this.add(btn);
}

@Override
public void actionPerformed(ActionEvent ae) {
System.out.println("Button has been clicked!");

}

42

Read

Chapter 6

LT e

ngineering

So&

“ TENTH EDITION.

e E

~lan Sommeryville

ALWAYS LEARNING PEARSON

43

References

= Tan Sommetrville, “Software Engineering”, 10® Edition, Addison-Wesley, 2015.

= Timothy C. Lethbridge and Robert Laganicre, “Object-Oriented Software Engineering: Practical
Software Development using UML and Java”, 27 Edition, McGraw Hill, 2001.

= R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,
2005.

Event-Driven Architecture (Realtime)

Mediator Topology:
Software Architecture patterns
by Mark Richards

Event
Queue
[Event Mediator]
v v v
Event Event Event
Channel Channel ChaFnd
'S ¢ s ¢ 4 4 ¢ N [¢)
Event Processor Event Processor Event Processor Event Processor Event Processor

| module ' ' module'

l module ' | module'

lmodule' | module'

| module' | module'

|module' | module'

| module ' ' module'

l module ' I module'

'module' l module.

ldl'[dl'
Lmoue module

'dl" dl'
Lmoue module

Event-Driven Architecture (Realtime)

I
| Relocation Mediator Topology Example
[You Move.... Software Architecture patterns
- by Mark Richards
P
P Event Mediator

-

= < > < >
Change Recalc Update Adjust Notify
Address Quote Claims Claims Insured

v v v

v

Recalc
Quote

| | | | |
| | | | |
\ 4 \ 4 \ 4 \ 4 \ 4
Customer Quote Claims Adjustment Notification
Processor Processor Processor Processor Processor

