-
S & client securicy Step
5 g upgrade O software o flﬁggﬁm on archibecture
% 1% deplogrnenb ) commercial process data programmer o
g Plabform 8 f

tware engineering
prog rammlng € documentation &, 75)E program adm,msb,abm

developmenb S & D eadeamaint enance‘: uSUSbem
:|Ibrarg ppllcablon

codln 35 D debugger '[9 g Uty
m OpEﬂ oszdrc upparb‘vendor D g 0pb|mlzablonpmcedu w

I assembler developerQ_ 2 reliabiliby informabion bechnologgm design
icense u

engineering operating system
gorlb mo upgam mherpreberE c’ﬁmmpllerprobobgplngg _E’ It':usnl::ﬂgﬁmn
requir b 1= GUPe a umonzablong ﬁlﬂglcr:e“fg:g‘ablm g 3B
S approa
firmware s ppr% \fenﬁcalaon |,nke,.'n ? execubmng_ %
£
o

SWE 205: Introduction to Software Engineering

Lecture 16

Programming Paradigms
Procedural and Object Oriented



Course Topics

+ Intreduction
+Seftware Process Meodels
Reausi B :
+ Moedeling
* Software Construction Techniques
* Testing
* Project Management

* Refactoring
e Ethical Issues




Lecture Objectives

v'Procedural programming |38 P

|
v’ Object-oriented programming plles




Programming Paradigms

Paradigms

Declarative
Programming

Functional
Programming

HASKELL

Logic
Programming

More declarative

No State

PROLOG

Imperative
Programming

Procedural
Programming

Less declarative

Object Oriented
Programming

C++
Java




Declarative Vs Imperative

® Imperative programming is a programming paradigm that
describes computation in terms of statements that change a
program state. Imperative programs define sequences of
commands for the computer to perform.

In an imperative program, we tell the computer
‘how’ we want to do a certain task.



Imperative Programming

® Activity Diagrams and Pseudo Code produced during the design
phase can be directly used to generate an imperative program.

® Example

Get value of x

andy Begin
If y=0 then Goto Error
Result = x/y;
Print Result;
Goto Final
Result = x/y ZDeI\r/oldlgrEgr Error: Print “Divide by 0
Final:
End

Print Result




A bit of history: Basic

10 dim 1

20 1 =0

301 =1 + 1

40 1f 1 <> 10 then goto 90

50 1f 1 = 10 then goto 70

60 goto 30

70 print "Program Completed.™

80 end

90 print 1; " squared = "; 1 * 1
100 goto 30



Procedural Programming

® Procedural programming is imperative programming in which the
statements are structured into procedures (also known as

From Computer Desktop Encyclopedia
1998 The Computer Language Co. Inc.

subroutines or functions).

" Using GOTO and label causes
“Spaghett: Code”

11010011
st
Tua1owl
10910161

41010110
10611001
0014101

" To avoid this, we structure the

100110w1
agatodwd

program into sub-functions.




main

{
Result = Add

(X,y); }
Else If Op=="-
{

}

Else If Op==
{

}
Else If Op==

{
}

Result = Sub (x,y);

Result = Div (x,y);

Result = Mul(x,y);

Else Print “lllegal Operator”

Begin
ACCi?RtAtQS )\(/,alue of Xand Y
Acgepiting Yelye for Operation
If Op==+" Goto Add

If drﬂ@‘ib(éﬁo Subtract
é)retur,n X- D}
If Op== vide

If OpERiv( @c)to Multlply

{ return (x/y
Print Wrong Operator”
|nt ?& ¥)| aI
Add Resu t = x+y Goto Result
Subtract: Result = x-y Goto Result
Divide: Result = x/y Goto Result
Multiply: Result = x*y Goto Result

Result: Print Result
Final:

End



Begin

End

Accept the Value of Xand Y
Accept the Value for Operation

If Op=="+ Goto Add

If Op=="-" Goto Subtract
If Op=="/" Goto Divide
If Op=="" Goto Multiply
Print “Wrong Operator”

Goto Final
Add: Result = x+y Goto Result
Subtract: Result = x-y Goto Result

Goto Result
Multiply: Result = x*y Goto Result
Result: Print Result

Final:

Divide: Result = x/y

main {
Accept the Value of X and Y
Accept the Value for Operation

If Op=="+’ Result = Add (x,y);
Else If Op=="-" Result = Sub (x,y);
Else If Op=="/ Result = Div (X,y);
Else If Op=="" Result = Mul(x,y);
Print Result
int Add(x,y){

return (x+y)
}
int Sub(x,yX{

return (x-y)
}
int Div(x,yX{

return (x/y)
}
int Mul(x,yX{

return (x*y)
}



Procedural Programming

® Advantages
- Modularity

- Re-usability

® The ability to re-use the same code at different places in the program without copying it.

- Avoids Spaghetti Code



Object Oriented Programming Paradigm

Motivation

Person

Database

Real World Entities match to Objects



Advantages of Object-Oriented Paradigm

® Encapsulation
- Used to hide the values or state of an object inside a class, preventing
unauthorized parties' direct access to them. Publicly accessible methods are
generally provided in the class (so-called getters and setters) to access the
values, and other client classes call these methods to retrieve and modify
the values within the object.

public class Employee {
private BigDecimal salary = new BigDecimal(5868@.88);

public BigDecimal getSalary() {
return salary;

}

public static void main() {
Employee e = new Employee();
BigDecimal sal = e.getSalary();



Advantages of Object-Oriented Paradigm

® Polymorphism
- ability of objects belonging to different data types to respond to method

calls of methods of the same name, each one according to an appropriate
type-specific behavior.

- Two forms of Polymorphism:

* Method overriding: the child class can use the OOP polymorphism
concept to override a method of its parent class. That allows a
programmer to use one method in different ways depending on
whether it’s invoked by an object of the parent class or an object of
the child class.

Method overloading: a single method may perform different
functions depending on the context in which it’s called. That s, a
single method name might work in different ways depending on
what arguments are passed to it.



Advantages of Object-Oriented Paradigm

" Reusability

- Objects are potentially reusable components.

“ Inheritance
- Itis an abstraction mechanism which may be used to classify entities. A
sub-class inherits the attributes and operations from its super class and may
add new methods or attributes of its own.



Procedural Vs Object Oriented

—
Procedural Object-Oriented
functions methods
modules objects
argument message
variable attribute




Programming Wisdom @CodeWisdom - 16 Nov 2017 v
@ "The object-oriented version of spaghetti code is, of course, 'lasagna code'. Too
many layers." - Roberto Waltman




Key Points

® Both procedural and object-oriented programming aim to
- Better modularity
- Better reuse

® Object-oriented programming adds several techniques such as
inheritance and polymorphism to make programming even easier



19

References

= Tan Sommetrville, “Software Engineering”, 10 Edition, Addison-Wesley, 2015.

= Timothy C. Lethbridge and Robert Laganicre, “Object-Oriented Software Engineering: Practical
Software Development using UML and Java”, 27 Edition, McGraw Hill, 2001.

= R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,
2005.



	Programming Paradigms�Procedural and Object Oriented
	Course Topics
	Slide Number 3
	Programming Paradigms
	Declarative Vs Imperative
	Imperative Programming
	A bit of history: Basic
	Procedural Programming
	Slide Number 9
	Slide Number 10
	Procedural Programming
	Object Oriented Programming Paradigm
	Advantages of Object-Oriented Paradigm
	Advantages of Object-Oriented Paradigm
	Advantages of Object-Oriented Paradigm
	Procedural Vs Object Oriented
	Slide Number 17
	Key Points
	References

