
Software Processes III

Lecture 5

SWE 205: Introduction to Software Engineering

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Project Management

• Refactoring

• Ethical Issues

Lecture Objectives

3

Coping with Change
- Prototyping

- Incremental delivery

- Spiral Model

Rational Unified Process

Hybrid Process Models

Agile Methods

Review

4

1- Specification

2- Development

3- Validation

4- Evolution

Process Models

Waterfall

Incremental

Reuse-based

Process Activities

Coping with change

 Change is inevitable in all large software projects.

- Business changes lead to new and changed system requirements

- New technologies open up new possibilities for improving

implementations

- Changing platforms require application changes

 Change leads to rework so the costs of change include both

rework (e.g. re-analyzing requirements) as well as the costs of

implementing new functionality.

5

Reducing the costs of rework

 Change anticipation, where the software process includes

activities that can anticipate possible changes before significant

rework is required.
- For example, a prototype system may be developed to show some key

features of the system to customers.

 Change tolerance, where the process is designed so that changes

can be accommodated at relatively low cost.
- This normally involves some form of incremental development. Proposed

changes may be implemented in increments that have not yet been

developed. If this is impossible, then only a single increment (a small part

of the system) may have to be altered to incorporate the change.

 Two ways to cope with change:
- System prototyping

- Incremental delivery

6

Prototyping

 A prototype is an initial version of a system used to demonstrate

concepts and try out design options.

 A prototype can be used in:

- The requirements engineering process to help with requirements elicitation

and validation

- In design processes to explore options and develop a UI design

7

Prototype development

 May involve leaving out functionality

- Prototype should focus on areas of the product that are not well-

understood

- Error checking and recovery may not be included in the prototype

- Focus on functional rather than non-functional requirements such as

reliability and security

8

The process of prototype development

9

Establish

Prototype

Objectives

Define

Prototype

Functionality

Develop

Prototype
Evaluate

Prototype

Prototype Plan
Outline

Definition

Execute

Prototype
Evaluate Report

Benefits of Prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

10

Prototype development

 May be based on rapid prototyping languages or tools

11

Throw-away prototypes

12

Prototype

Yes/ No? Why?

+ Extra stuff = Final System

Throw-away prototypes

 Prototypes should be discarded after development as they are not

a good basis for a production system:

1. It may be impossible to tune the system to meet non-functional

requirements

2. Prototypes are normally undocumented

3. The prototype structure is usually degraded through rapid change

4. The prototype probably will not meet normal organizational quality

standards

13

Prototyping

 Problems

- It may be impossible to tune the prototype to meet non-functional

requirements,

- Changes degrades the system structure.

- Prototype is undocumented.

- Special skills (e.g. in languages for rapid prototyping) may be required

 Applicability

- For small or medium-size interactive systems

- For parts of large systems (e.g. the user interface)

- For short-lifetime systems

14

Incremental Delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into increments with

each increment delivering part of the required functionality.

 User requirements are prioritised and the highest priority

requirements are included in early increments.

 Once the development of an increment is started, the

requirements for the services to be delivered in the first increment

are defined in detail. Further requirements for later increments

can continue to evolve.

15

Incremental Delivery

16

Incremental Delivery

 Advantages
- Customers can use the early increments as prototypes and gain experience

that informs their requirements for later system increments.

- Customers do not have to wait until the entire system is delivered

- Easy to incorporate changes into the system.

- As the highest-priority services are delivered first and increments then

integrated, the most important system services receive the most testing

 Issues
- Iterative development can also be difficult when a replacement system is

being developed.

- Conflicts with the procurement model of many organizations, where the

complete system specification is part of the system development contract.

17

Boehm’s spiral model

 Risk-driven development process
- proposed by Boehm in 1988

 Process is represented as a spiral rather than as a sequence of

activities with backtracking.

 Each loop in the spiral represents a phase in the process.

 No fixed phases such as specification or design - loops in the

spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout the process.

18

19

Spiral model – Typical Traversal

 Identify the objectives, alternatives or constraints for each cycle of

the spiral.

 Evaluate the alternative relative to the objectives and constraints.
- In this step, many of the risks are identified and evaluated.

 Depending on the amount of and type of identified risks,
- Develop a prototype, more detailed evaluation,

- An evolutionary development, or some other step to further reduce the risk

of achieving the identified objective.

- On the other hand, if risk is substantially reduced, the next step may just be

a task such as requirements, design or code.

 Validate the achievement of the objective and plan for next cycle.

20

Spiral model usage

 Spiral model has been very influential in helping people think

about iteration in software processes and introducing the risk-

driven approach to development.

 In practice, however, the model is rarely used as published for

practical software development.

21

The Rational Unified Process

 Modern process model
- Closely aligned with the Unified Modeling Language (UML).

 “Use-case” driven

 Architecture-centric

 Iterative and incremental software process

 Intended for large-scale applications where robustness, scalability,
and extensibility are mandatory
- Telecommunication, financial services, transportation, etc.

22

The Rational Unified Process

23

RUP—Dynamic Perspective

 Phase Model

24

Phase iteration

Inception Elaboration Construction Transition

RUP Phases

 Inception
- Establish the business case for the system {Identifies the External Entities

that interact with the system}.

 Elaboration
- Develop an understanding of the problem domain and the system

architecture {Results in requirements model, architectural description, and
a development plan}.

 Construction
- System design, programming, and testing {Results in a working software

system and associated documentation that ready for delivery to the user}.

 Transition
- Deploy the system in its operating environment {Results in a documented

software system that is working correctly in its operational environment}.

25

Incept ion Elaborat ion Const ruct ion Transit ion Product ion

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

RUP Phases

RUP good practice

 Develop software iteratively

 Manage requirements

 Use component-based architectures

 Visually model software

 Verify software quality

 Control changes to software

27

Hybrid Process Models

 Large systems are usually made up of several sub-systems

 The same process model need not be used for all subsystems

- Prototyping for high-risk specifications

- Waterfall model for well-understood developments

28

Agile Methods

29

Agile methods: Extreme Programming (XP)

 Three to ten programmers working at one location.

 One or more customers are on site.

 Development occurs in frequent builds or iterations, each of

which is releasable and delivers incremental user functionality.

 The unit of requirements gathering is the user story, a chunk of

functionality that provides value to the user. User stories are

written by the customers on site.

30

Agile Methods: XP Principles Characteristics

 Programmers work in pairs and follow strict coding

standards. They do their own unit testing and are

supposed to routinely refactor the code to keep the

design simple.

 Since little attempt is made to understand or document

future requirements, the code is constantly refactored

(redesigned) to address changing user needs.

31

Agile Methods: Extreme Programming (XP)

32

Agile Methods: Scrum

33

 Work is done in “sprints,” which are timeboxed iterations of a

fixed 30 days or fewer duration.

 Work within a sprint is fixed. Once the scope of a sprint is

committed, no additional functionality can be added, except by the

development team.

Key points

 Processes should include activities to cope with change. This may

involve a prototyping phase that helps avoid poor decisions on

requirements and design.

 Processes may be structured for iterative development and

delivery so that changes may be made without disrupting the

system as a whole.

34

Read

35

Chapter 2 and Chapter 3

References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.

 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.

 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

36

Next

Chapter 4 Requirements Engineering

37

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Project Management

• Refactoring

• Ethical Issues

