
Architectural design

Lecture 11

SWE 205: Introduction to Software Engineering



Course Topics

• Introduction

• Software Process Models

• Requirements Engineering 

• Modeling

• Programming Languages

• Software Construction Techniques 

• Testing

• Project Management

• Refactoring

• Ethical Issues



Lecture Objectives

3

Architectural design

Architecture Characteristics

4+ 1 Architectural Views

Architectural Patterns



Introduction to Design

 Once the requirements of a project are understood, the

transformation of requirements into a design begins.

 This a difficult step that involves the transformation of a set of

intangible (the requirements) into another set of intangible (the

design).

 Software design details with how the software is to be structured

– that is, what its components are and how these components are

related to each other.

4



Introduction to Design

 For a large system, it usually makes sense to divide the design

phases into two parts:

 Architectural design phase

 Detailed design phase

5



Introduction to Design

 Architectural design phase – This a high-level overview of the

system.

 The main components are listed as well as properties external to

the components and relationships among components.

 The functional and nonfunctional requirements along with

technical consideration provide most of the drive for the

architecture.

6



Introduction to Design

 Detailed design phase – components are decomposed to a much

finer level of details.

 The architecture and the functional requirements drive this phase.

 The architecture provides general guidance and all functional

requirements have to be addressed by at least one module in the

detailed design.

7



Relationship between Architecture and Design

8



9

Most influential requirements may be

nonfunctional requirements, such as

performance an maintainability.

Relationship between Architecture and Design



 Ideally there is a one-to-one mapping between each functional

requirement and a module in the detailed design.

 The architecture drives the detailed design, with the mapping

being ideally from one architectural component to several detailed

modules.

10

Relationship between Architecture and Design



 Smaller systems may get away with not having an explicit

architecture, although it is useful in almost all cases.

 In traditional software processes, the ideal is for the design to be

created and documented up to the lowest level of detail possible,
- with the programmers doing mainly translation of that design into actual 

code. 

11

Relationship between Architecture and Design



Architectural Design

 What is software architecture?

- The software architecture of a system specifies its basic structure. 

- The design process for identifying the sub-systems making up a system and 

the framework for sub-system control and communication is architectural 

design.

- The output of this design process is a description of the software 

architecture.

12



System Structuring

 Concerned with decomposing the system into interacting sub-

systems.

 The architectural design is normally expressed as a block diagram

presenting an overview of the system structure.

 More specific models showing how sub-systems share data, are

distributed and interface with each other may also be developed.



Block Diagrams

 Very abstract
- they do not show the nature of component relationships nor the externally 

visible properties of the sub-systems.

 However, useful for communication with stakeholders and for

project planning.

 Packing Robot System



Architectural Design

 There are several important points to note about the architecture

of a system:

1. Every system has an architecture.
- Whether you make it explicit or not, whether you document it or not, the 

system has an architecture.

2. There could be more than one structure.
- For large systems, and even many small ones, there is more than one 

important way the system is structured. 

- We need to be aware of all those structures, and document them with 

several views. 

15



Architectural Design

3. Architecture deals with properties external to each module.
- At the architectural level, we should think about the important modules 

and how they interact with other modules.

- The focus is on the interfaces among modules rather than details 

concerning the internals of each module. 

16



Advantages of Explicit Architecture

 Stakeholder communication
- Architecture may be used as a focus of discussion by system stakeholders.

 System analysis
- Means that analysis of whether the system can meet its non-functional 

requirements is possible.

 Large-scale reuse
- The architecture may be reusable across a range of systems.



Architecture Design Decisions (Architecture Characteristics)

 Performance
- Localize critical operations and minimize communications. Use large rather 

than fine-grain components.

 Security

- Use a layered architecture with critical assets in the inner layers.

 Safety

- Localize safety-critical features in a single component or small number of 

components.

 Availability

- Include redundant components and mechanisms for fault tolerance.

 Maintainability

- Use fine-grain, self-contained components, replaceable components.



Architectural Conflicts

 Using large components improves performance but reduces

maintainability.

 Introducing redundant data improves availability but makes security

more difficult.

 Localizing safety-related features usually means more

communication so degraded performance.



Architectural Views

 Each architectural model only shows one view or perspective of

the system. It might show
- how a system is decomposed into modules

- how the run-time processes interact

- different ways in which system components are distributed across a 

network.

 For both design and documentation, you usually need to present

multiple views of the software architecture.



Architectural Views

 4+1 view model of software architecture:

 logical view, which shows the key abstractions in the system as 

objects or object classes (relate the system requirements to entities 

in this logical view).

 A process view, which shows how, at run-time, the system is 

composed of interacting processes (useful for making judgments 

about non-functional system characteristics).

 A development view, which shows how the software is decomposed 

for development (useful for managers and programmers).

 A physical view, which shows the system hardware and how 

software components are distributed across the processors in the 

system (useful for system deployment).

 Related using use cases or scenarios (+1).



22



Architectural patterns 



Architecture Patterns

 Stylized, abstract description of good practice.

 Tried and tested in different systems and environments
- Successful in previous systems

 Includes information on when it is and is not appropriate to use

that pattern.

 Includes information on the pattern’s strengths and weaknesses.

24



Architecture Patterns Covered

 Client Server Architecture

 Layered Architecture

 Repository

 Event Driven

25



Client-Server Architecture

 Application split into client components and server components.

 Client may connect to more than one server (servers are usually

independent).

26



Client-Server Architecture

 An architecture showing a clear demarcation between clients and

servers, which reside on different nodes in a network.

 Components interact through basic networking protocols.

 Usually there will be many clients accessing the same server.

27



Client-Server Architecture

28



Client-Server Architecture

29

 Below architecture is a multi-user, web-based system for

providing a film and photograph library.



Layered Architecture

 The layered architecture aims at achieving separation and

independence.

 An architecture in which components are grouped into layers, and
- Components communicate only with other components in the layer 

immediately above and below their own layer. 

30



Layered Architecture

31



Generic Layered Architecture

32



Layered Architecture

33

 The architecture of a Linux System consists of following layers:
- Hardware layer (e.g. RAM/ CPU).

- Kernel : it is the core component of OS

- Shell: an interface to kernel, hiding complexity of kernel's functions.

- Utilities: programs that provide the user most of the functionalities of OS.



Layered Architecture

 While layered architecture keeps the components themselves

focused on specific tasks and facilitates the detection of

problems;
- It sometimes presents a performance problem in terms of the number of 

layers a message may have to travel through before being processed. 

34



Layered Architecture

35

 Library system (LIBSYS) as a layered architecture.



Repository Architecture

 An architecture in which a central database and separate

programs access the database.

 The programs communicate only through the database
- Not directly among themselves.

 A big advantage – it introduces a layer of abstraction for the

database.
- Called a Database Management System (DBMS). 

36



Repository Architecture

37



Repository Architecture

38

Hospital

DB

Patient processing

Room Scheduling

Nurses Scheduling 

Purchasing 

.

.

Very popular 

within the 

business 

applications 

community



Repository Architecture for an IDE

39



Event-Driven Architecture (Realtime)

 The high level design solution is based on an event dispatcher

which manages events and the functionalities which depends on

those events.

Personal (device)

dispatcher

voice

call
text

msg

Image

keypad

Phone

processing

Txt 

processing

Image

processing

Problems that fit this architecture includes real-time systems such as: airplane control;

medical equipment monitor; home monitor; embedded device controller; game; etc.



Event-Driven Architecture Example

 Think of Java?
- Java Swing API



Read

42

Chapter 6



References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.

 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.

 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

43



Event-Driven Architecture (Realtime)

Mediator Topology: 

Software Architecture patterns

by Mark Richards



Event-Driven Architecture (Realtime)

Mediator Topology Example 

Software Architecture patterns

by Mark Richards


