
Introduction II

Lecture 2

SWE 205: Introduction to Software Engineering

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Refactoring

• Project Management

• Ethical Issues

Lecture Objectives

3

Software Dual Rule

Software Vs. Hardware

Software Quality

Software’s Dual Role

 Software is a product
- Delivers computing potential

- Software is an information transformer: Produces, manages, acquires,

modifies, displays, or transmits information

4

Dual Role

Product
Vehicle for delivering other

products

Software’s Dual Role

 Software is a vehicle for delivering a product

- Basis for the controls of the computer (e.g. operating systems)

- Communication of Information (e.g. networking software)

- Creation and control of other software (e.g. software tools and

environments)

5

Software Applications

 No clear breakdown of application types, following are some
generally accepted overlapping categories.

1. Stand-alone applications: run on a local computer and do not need

to be connected to a network (e.g., office applications, photo

manipulation software).

2. Interactive transaction-based applications: execute on a remote

computer and accessed by users from their own PCs/terminals.

3. Embedded control systems: software control systems that control

and manage hardware devices (e.g., software in a mobile phone,

software in a microwave oven).

4. Batch processing systems: business systems designed to process data

in large batches (e.g., as phone billing systems, and salary

payment systems)

6

Software Applications

5. Entertainment systems: Primarily for personal use and intended to

entertain the user (e.g., games)

6. Systems for modeling and simulation: Developed by scientists and

engineers to model physical processes. They are often

computationally intensive (e.g., molecular biology, astronomy, etc.)

7. Data collection systems: Collect data from their environment using a

set of sensors and send that data to other systems for processing.

8. Systems of systems: Systems composed of a number of other

software systems. Some of these may be generic software products,

such as a spreadsheet program.

7

Software Characteristics

 Software is developed or engineered; it is not

manufactured in the classical sense
- Different from hardware manufacturing process.

- Software is custom built

- However, software industry is moving towards component-based

development

 Software does not wear out,
- but it does deteriorate

8

Hardware Failure

 Bathtub curve

9

Time

Failure Rate

Wear OutInfant Mortality

Hardware components suffer from the cumulative effects of

dust, vibration, abuse, temperature extremes, etc.

Software Failure (Ideal)

 Idealized curve (oversimplified)

10

Time

Failure Rate

Infant Mortality

Undiscovered defects will cause high failure rates early in the

life of a program. These are corrected and the curve flattens.

Software Failure (Realistic)

11

Time

Failure Rate

Actual

Change

Increased Failure

Rate due to side Effects

Before the curve can return to the original steady-state failure rate,

another change is requested, causing the curve to spike again.

Slowly, the minimum failure rate level begins to rise—the software is

deteriorating due to change.

Software Quality

 It is not enough just to produce software
- Software should deliver the required functionality

 Software should have the appropriate product

characteristics
- The relative importance of these characteristics varies from product to

product

12

Software Quality Attributes

 Usability
- Users can learn the software to get their job done easily and fast.

 Efficiency
- It doesn‘t waste resources such as CPU time and memory

 Dependability
- Software must be trustworthy; e.g. reliability, security, safety

 Maintainability
- It can be easily changed

 Reusability
- Its parts can be used in other projects, so reprogramming is not needed

13

Software Quality and Stakeholders

14

QUALITY

SOFTWARE

Developer:

easy to design;

easy to maintain;

easy to reuse its parts

User:

easy to learn;

efficient to use;

helps get work done

Customer (those who pay):

solves problems at

an acceptable cost in

terms of money paid and

resources used

Development manager:

sells more and

pleases customers

while costing less

to develop and maintain

Software Quality Attribute

 Usability
- Software must be accepted by the users for what it was designed.

- Appropriate user interface & adequate documentation.

15

16

http://flappybird.io/

http://flappybird.io/

17

Software Quality Attribute

 Efficiency
- Software should not make wasteful use of system resources

- e.g., CPU, Memory, Drive space etc.

18

Software Quality Attribute

 Dependability
- Software must be trustworthy; e.g. reliability, security, safety,

availability.

 Principal dimensions of dependability are:
- Availability

• System ability to deliver services when requested

- Reliability
• System does what it is required to do without failing

- Safety
• System’s ability to operate, normally or abnormally, without danger of causing human injury or

death and without damage to the system’s environment

- Security
• System ability to protect itself against intrusion

19

20

Software Quality Attribute

 Dependability is important for:
- Safety-critical systems

• Failure results in loss of life, injury or damage to the environment

• E.g. Chemical plant protection system

- Mission-critical systems
• Failure results in failure of some goal-directed activity

• E.g. Spacecraft navigation system

- Business-critical systems
• Failure results in high economic losses

• E.g. Customer accounting system in a bank

21

22

Please register

to continue

using this

software

Software Quality Attribute

 Maintainability
- Software should be written in such a way so that it can evolve

to meet the changing needs of customers.

23

24

25

Complex

But

Organized and

Maintainable

Software Quality: Conflicts and Objectives

 Characteristics relate to each other

 The different qualities can conflict
- Increasing efficiency can reduce maintainability or reusability
- Increasing usability can reduce efficiency

 Setting objectives for quality is a key engineering

activity
- You then design to meet the objectives

26

Complex Trade-Offs

Discussion

 List important quality attributes for

27

Key Points

 Software’s dual roles
- Software is a product; and

- Software is a vehicle for delivering a product

 Software does not wear out,
- but it does deteriorate

 It is not enough just to produce software
- Software should deliver the required functionality

- Software characteristics also relate to each other

28

Read

29

Chapter 1

References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.

 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.

 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

30

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Project Management

• Refactoring

• Ethical Issues

