curity SUep
upgrade O software | ..er feature sea::rt'ugecbure
deployment f ¢) commercial Pfocessdaba lnsbrucblon

framework
database

programmer

paviorm _SOfbware engineering
prOg ram mlng € documentation &, z3E program administrator

applicabion odeveldopmenu s C embeddedma|nbenau|;g§re % Boustem
3':*’ y Icavi «==CO mg%s Sopbtimization D g
Nl e urC upporbvend D b b

procedure ) = £
e assembler deV9|OperQ_ 3 reliability information bechnologgm design
icense w

engineerin 3 operating system
gorlb m upgabe mbgrpreber E 22 compllerprobobgpmg.g 8’ }ﬁi’iﬂ{gﬁ”“
requirements & UBPe aubhorization O a“09"3 information

a roach reporb
fimware nimm PP N ilcation Imkern P execublon§.

mebthodol

(=]

specf

SWE 205: Introduction to Software Engineering

Lecture 12

Class Diagram



Course Topics

+—Introduetion
+Seftware Process Meodels
Rec E oo .
* Modeling
* Programming Languages
* Software Construction Techniques
* Testing
* Project Management

* Refactoring
e FEthical Issues




Lecture Objectives

v"Modeling Classes

v Associations

v Generalizations

v Interfaces




What is UML?

"The Unified Modelling LLanguage is a standard graphical language
for modelling object oriented software

- Developed by Rumbaugh, Booch and Jacobson

- Based on earlier languages they had each developed

- They worked together at the Rational Software Corporation, later bought
by IBM
® Much development of UML has been done at IBM Rational Ottawa

- In 1997 the Object Management Group (OMG) started the process of
UML standardization



UML diagrams

Diagram

7

| |

Structure Behavior
Diagram Diagrarm
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram
Profile csﬂt:.] E;‘l}usr!;e Deployment Package Interaction State Machine
Diagram Diagram Diagram Diagram Diagrarm Diagram
- Interaction -
Sequence Communication Overview Timing
Natation: LIRAL i Di i
Diagram iagram Diagram Diagram




Essentials of UML Class Diagrams

"The main symbols shown on class diagrams are:
- (Classes
* represent the types of data themselves

Associations

* represent linkages between instances of classes
Attributes

* are simple data found 1in classes and their instances

Operations

* represent the abstract functions performed by the classes and
their instances, as well as specific methods implementing these

Generalizations

* group classes into inheritance hierarchies



Classes

" A class 1s simply represented as a box with the name of the class

inside

- 'The diagram may also show the attributes and operations

- The complete signature of an operation is:

operationName(parameterName: parameterType ...): returnType

Rectangle Rectangle Rectangle Rectangle Rectangle
getArea() height height - height:
resize() width width - width:

getArea() + getArea(): int
resize() + resize(int.int)




Associations and Multiplicity

" An association is used to show how two classes are related to each

other

- Symbols indicating multiplicity are shown at each end of the association

Employee o 1 Company
Administrative Assistant — L% Manager
Company [ 4 BoardOfDirectors

Office |2 * Employee

Exactly one 1
Zero or more *(0.%)
(unlimited) h
One or more 1.*
Zero or one

(optional 0.1

association)

Specified range

2.4

Multiple, disjoint
ranges

2,4..6,8..10




Labelling associations

- Fach association can be labelled, to make explicit the nature of the

association

%k worksFor 1

Employee Company

Administrative Assistant - Manager
SUpervisor

Company F 4 BoardOfDirectors
llocatedT %

Office [l Zocdecob Employee




10

Analyzing and validating associations

- Many-to-one

* A company has many employees,

An employee can only work for one company.

A company can have zero employees

It 1s not possible to be an employee unless you work for a company

worksFor 1

Employee |* Company




11

Analyzing and validating associations

- Many-to-many

An assistant can work for many managers
A manager can have many assistants
Managers can have a group of assistants
Some managers might have zero assistants.

Is it possible for an assistant to have, perhaps temporarily, zero
managers?

* 1.”*

Assistant Manager

supervisor




12

Analyzing and validating associations

- One-to-one
* For each company, there 1s exactly one board of directors
* A board is the board of only one company
* A company must always have a board

* A board must always be of some company

Company ! 1| BoardOfDirectors




Analyzing and validating associations

" Avoid unnecessary one-to-one associations

" Avoid this
Person PersonlInfo
] 1
name address
email
birthdate
“do this Person
name
address
email
birthdate




14

A more complex example (1)

- A booking is always for exactly one passenger

* no booking with zero passengers

* abooking could never involve more than one passenger.
- A Passenger can have any number of Bookings

* a passenger could have no bookings at all

* apassenger could have more than one booking

Booking passengers on flights )

1 H

SpecificFlight

Passenger Booking

- 'The frame around this diagram 1s an optional feature that any UML 2.0
diagram may possess.



15

A more complex example (2)

Condition

Consultant

1

referred-to

1.%
1.¥ 1.*% 1.¥ 1
. " General
Patient S
diagnosed- referred-by practitioner
with 1.%
attends
1.¥
) prescribes T
Consultation Medication
1.¥ 1.¥
1.7 1.*
: rescribes
involves P Treatment
1.4 1.*
Hospital
Doctor




Directionality in associations

* Associations are by default bz-directional

* It 1s possible to limit the direction of an association by adding an
arrow at one end

Day ' > Note




17

Generalization

"Specializing a superclass into two or more subclasses
- A generalization set 1s a labeled group of generalizations with a common
superclass
- 'The label (sometimes called the discriminator) describes the criteria used in
the specialization

Animal Animal

Z%habitat Z;type()fF ood

AquaticAnimal LandAnmmal Carnivore Herbivore




18

Generalization Example

Doctor

Consultant

Doctor

MName
Phone #
Email

register ( )
de-register ( )

5

Hospital doctor

Hospital General
doctor practitioner
Team doctor
Trainee Qualified
doctor doctor

Staff #
Pager #

General practitioner

Practice
Address




19

More Advanced Features: Aggregation

- Aggregations are special associations that represent
‘part-whole’ relationships.

* The ‘whole’ side is often called the assembly or the aggregate

® 'This symbol is a shorthand notation association named 1sPartOf

Vehicle <>1 * VehiclePart

Country k> | Region




20

When to use an aggregation

"As a general rule, you can mark an association as

an aggregation if the following are true:

- You can state that

* the parts ‘are part of’ the aggregate
* or the aggregate ‘is composed of’ the parts

- When something owns or controls the aggregate, then
they also own or control the parts



21

Composition

- A composition 1s a strong kind of aggregation
* 1f the aggregate is destroyed, then the parts are destroyed as well

N Room

Building (g

- T'wo alternatives for addresses

Employee Employee H Address

address: Address street
municipality
region
country
postalCode




Composition vs. Aggregation

cd Composite /
Addres=Book ContactGroup
Tl

1 o.F
1 o.r
.=

Cortact
.=




Aggregation hierarchy

Frame

—
Vehicle
¢
1 S £
Chassis BodyPanel Door
<&
1 1 1 ZS
Engine Transmission Wheel




Interfaces

. __________________________________________________________________| I
An interface is a bit like a class, except that an interface can only
contain method signatures and fields.

An interface cannot contain an implementation of the methods,
only the signature (name, parameters and exceptions) of the
method.

A class can have an actual instance of its type, whereas an
interface must have at least one class to implement

An interface can be realized by many classes.

A class may realize many interfaces.

<<interface>>

LinkedList [~ >

LinkedList —() List




25

Suggested sequence of activities

- Identify a first set of candidate classes

- Add associations and attributes

- Find generalizations

- List the main responsibilities of each class
- Decide on specific operations

- Iterate over the entire process until the model 1s satisfactory
* Add or delete classes, associations, attributes, generalizations,
responsibilities or operations
* Identify interfaces
* Apply design patterns (Chapter 6)

“Don’t be too disorganized. Don’t be too rigid either.




26

Read

SOftare

Engineering
S Y &

z N S,

ALWAYS LEARNING PEARSON

Chapter 5 and 7



27

References

= Tan Sommetrville, “Software Engineering”, 10® Edition, Addison-Wesley, 2015.

= Timothy C. Lethbridge and Robert Laganicre, “Object-Oriented Software Engineering: Practical
Software Development using UML and Java”, 27 Edition, McGraw Hill, 2001.

= R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,
2005.



