- b
54 client — security SUep
5 g upgrade O software o flﬁggumbl on archibecture
% 1% deplogmenb) commercial process data programmer o
g Plabform 8 f

ftware engineering
programmlng o““"mmmmm b program WP, ecmiistrsbor

development_ 2 ¢ embeddedMAING enance‘: uSUSbem
_:|Ibrarg ppllcablon

=codingz: 5 debugger 5 g ubiloy
@ open oszd rce, pparhvendor D g Opblmlzablonpmedu N

I assembler developerQ_ reliabiliby informabion bechnologgm design
icense u

i st
algorihmS s8zhtve. £ it !

=]
3 msballabmn
requirement mum GYpe ulmonzablono mlognc information .§ function
. 5y approach O 2 reporbexecutiong £
firmware la %venﬁcamon ki 8 5
E
fa)

SWE 205: Introduction to Software Engineering

Lecture 17

Software Construction

Course Topics

+ Intreduction
+Seftware Process Meodels
Reausi B :
+ Moedeling
* Software Construction Techniques
* Testing
* Project Management

* Refactoring
e Ethical Issues

Lecture Objectives

v Software Construction
Fundamentals
- Creating Understandable Code
- Source Code Organization
- Code Documentations

Software Construction

® What is Software Construction?
- In general “construction” refers to the hands-on part of creating
something.

- Software Construction can be defined as detailed creation of working,
meaningful software through a combination of coding, verification, unit

testing, integration testing, and debugging.

- Construction 1s also sometimes known as “coding” or “programming.”

Introduction

" Software construction closely tied to

- Software design

- Software testing

Design

[

Construction

[

Testing

Software Construction Activities

Problem
Definition

Maintenance

Requirements
Gathering
System
Testing

Coding &
Debugging

Construction activities
are shown inside the

shaded region. _
Integration

Integration
Testing

S/W
Architecture

Software Construction Fundamentals

® The fundamentals of software construction include:
- Minimizing complexity

- Anticipating change
- Constructing for verification

- Standards in construction

Minimizing Complexity

I
® Humans are severely limited in our ability to hold complex

information in our working memories

® As a result, minimizing complexity 1s one the of strongest drivers
in software construction

® Need to reduce complexity throughout the lifecycle

® As functionality increases, so does complexity

Minimizing Complexity

® Accomplished through use of standards

“ Examples:
- J2EE for complex, distributed Java applications
- UML for modeling all aspects of complex systems
- High-level programming languages such as C++ and Java
- Source code formatting rules to aid readability

10

Anticipating Change

" Software changes over time

® Anticipation of change affect how software 1s constructed

" This can effect

- Use of control structures
- Handling of errors

- Source code organization
- Code documentation

- Coding standards

11

Constructing for verification

" Construct software that allows bugs to be easily found and fixed

“ Examples:

- Enforce coding standards
® Helps support code reviews

Unit testing

- Organizing code to support automated testing

Restricted use of complex or hard-to-understand language structures

Reuse

" In software construction, typical assets that are reused include
libraries, modules, components, source code, and commercial off-

the-shelf (COTY) assets.

" Reuse 1s best practiced systematically, according to a well-defined,
repeatable process.

" Systematic reuse can enable significant software productivity,
quality, and cost improvements.

13

Standards in Construction

® Standards which directly affect construction issues include:

- Programming languages

® E.g. standards for languages like Java and C++

- Communication methods

® E.g. standards for document formats and contents

- Platforms

® E.g. programmer interface standards for operating system calls, J2EE

- Tools

® E.g. diagrammatic standards for notations like the Unified Modeling Language

Software Construction Metaphotr

" The letter-writing metaphor suggests that the software process relies
on expensive trial and error rvather than careful planning and

design.

*
>

S

".“,.h-

m”‘r"’*
L
———
L 3

1/3 Creating Understandable Code

“ Naming

" Source
Layout

Code

X o= X — XX}

b
b
o

I

aretha + SalesTax{ aretha);
¥ = ¥ + LateFee(x1, x) + xxx;

X = X + Interest{ x1, x };

/% Use the insertion sort techmigue to sort the "data” array in ascending order.
This routine assumes that data[firstElement] is not the first element in data and
that data[firstElement-1] can be accessed. */ public void InsertionSort{ int[]
data, int firstElement, int lastElement) { /* Replace element at lower boundary
with an element guaranteed to be first in a sorted Tist. */ int lTowerBoundary =
data[firstElement-1]; data[firstElement-1] = SORT_MIN; /* The elements in
positions firstElement through sortBoundary-1 are always sorted. In each pass
through the Toop, sortBoundary is increased, and the element at the position of the
new sortBoundary probably isn't in its sorted place in the array, so it's inserted
into the proper place somewhere between TirstElement and sortBoundary. */ for (int
sortBoundary = firstElement+l; sortBoundary <= lastElement; sortBoundarye=—) { int
insertvVal = data[sortBoundary]; int insertPos = sortBoundary; while (insertVal =<
data[insertPos-1]) { data[insertPos] = data[insertPos-1]; insertPos =
insertPos-1; } data[imsertPos] = insertVal; } /* Replace original lower-boundary

glement */ data[firstElement-1] = lTowerBoundary; }

16

Source Code Layout

® Layout Techniques
White Space

Usewhitespacetoenhancereadability

- Grouping

® Paragraph of code should contain statements that accomplish a single task and that are

related to each other

- Blank lines

® Separate unrelated statements from each other using blank line.

- Indentation

® Use indentation to show the logical structure of a program.

Parenthesis

® Use parentheses to clatify expressions that involve more than two terms to add clarity.

Naming Mechanism

® Previous Example with Meaningtul Names

K= K - M¥j balance = balance - lastPayment;

wxx = aretha + SalesTax{ aretha); monthlyTotal = NewPurchases + SalesTax(newPurchases);

¥ = x + LateFee(x1, x) + xxx; balance = balance =+ LateFee(customerID, balance) + monthlyTotal;
x = x + Interest(x1, x);: balance = balance + Interest(customerID, balance);

® Naming is a tedious job.

® But Naming Conventions help when

- Multiple programmers are working on a project

- You plan to turn a program over to another programmer for modifications
and maintenance

- Your program 1s so large that you can’t hold the whole thing in your mind
at once and must think about 1t in pieces

- You have a lot of unusual terms that are common on a project and want to
have standard terms or abbreviations to use in coding

18

Naming Mechanism

® Name fully and accurately describe the entity the wvariable

thfCSCﬂtS.

- A variable that contains the current interest rate is better named rate or
interestRate than r or x.

® Follow Language-Specific Conventions
- For example in Java

1and j are integer indexes

Constants are in AL, CAPS separated by underscores

Class and interface names capitalize the first letter of each word, including the first—for
example, ClassOrlnterfaceName.

Variable and method names use lowercase for the first word, with the first letter of each
tollowing word capitalized—for example, variableOrRoutineName.

19

2/3: Source Code Organization

" Typically organized into statements, methods, classes and

packages.

® Important questions is when to create a method, a class or a

package.

20

2/3: Source Code Organization (cont.)

" When to create a Method?

Reduce complexity

Make a section of code readable
Avoid duplicate code

Improve performance

" When to create a Class?

You can hide implementation details

Changes don’t affect the whole program

You don’t have to pass data all over your program

You’re able to work with real-world entities rather than with low-level
implementation structures

3/3 Code Documentation

® Why people don’t write comments?
- They think their code is clearer than it could possibly be.
- They think that other programmers are far more interested in their code
than they really are.
- 'They are lazy.
- They are afraid someone else might figure out how their code works.

1 import java.awt.*®;

2 import java.applet.®;

3 import java.awt.event.*®;

5 pubklic class DemoZ2Image extends Applet implements ActionListener {

g Button btoMove;

7 private int imageLeft = 10; //stores location of left side of image
g Image myImage; //Image object which will be drawn

g

10 public woid initc() {

13 setLayout (null);

2 btnMove = new Button ("Move Image™):

U} btnMove.setBounds (40,100,300, 40) ;

144 add (btoMove) ;

5 btnMove.addActionListener (this);
46 H

18 public wvoid paint (Graphics g) {

19 myImage = getImage (getCodeBase(), "box.gif"); //loads the image
20 //box.gif MOST BE IN S5AME FOLDER AS THE CLASS5 FILE (not the .java file)
24 g.drawImage (myImage, imageLeft, 10, this);
22 //draws the image at (x = imageLeft, y = 10)
i g.drawLine (0,0, imageLeft, 10);

24 //draws a line from origin to corner of box image

25 H

26

2 public woid actionPerformed (ActionEvent event) {

28 if {event.getSource() == btnMove) {

i3 imageLeft = imageLeft + 10; //increments left side of image
30 repaint();

3/3 Code Documentation (cont.)

® Explain the code’s intent or summarize what the code does,
rather than just repeating the code

" Avoid end line comments
- They make the statement lengthier and intermingle with the code
- Use end line comments only with data declarations

® Comments should focus on why rather than how.
® Avoid redundant, extraneous and self-indulgent comments.

® Avoid abbreviations in comments

3/3 Code Documentation (cont.)

" Use commenting style that allows comments to be easily modified

® Keep comments clear, correct and up to date.

® Finally — the beginning of a file, class and a routine should always
be commented with its purpose.

24

Example of code comments !!

o,

| Basmati Rice_

_f
v

4

=4

25

Code Documentation: javadoc

® javadoc.exe: documentation tools can be very handy

1 /==
2 * Return=s an Image object that can then be painted on the =creen.
3 #* The url argument must specify an absolute {@link URL}. The name
o * argument is a specifier that i=s relative to the url argument.
5 ¥ Lp>
& *# Thi=s method always returns immediately, whether or not the
7 * image exists. When this applet attempts to draw the image on
8 * the =screen, the data will be loaded. The graphics primitives
g * that draw the image will incrementally paint on the screen.
10
11 fparam wurl an absolute URL giving the base location of the image
12
13 fparam name the location of the image, relative to the url argument
14
15 Freturn the image at the specified UERL
16
17 Ezee Image
18 = oS
15 public Image getImage (UREL url, String name) {
20 E try {
21 return getImage (new URL({url, name)) ;
22 } catch (MalformedURLException e) {
23 return null;
24 = }
25

0
O

O
0a,
m

‘ javadoc

Search

About 4,720,000 results (0.08 seconds)

Advanced search

26

Code Documentation: javadoc output

Image.htm

Class Image

java.lang.Cbject
L—Image

public clas=s Image
extends java.lang.0bject

Method Detail

getImage

public Image getImage (URL url,
java.lang.5tring name})

Returns an Image object that can then be painted on the screen. The wl argument must specify an
absolute URL. The name argument is a specifier that is relative to the wrl argument.

This method always returns immediately, whether or not the image exists. When this applet attempts to
draw the image on the screen, the data will be loaded. The graphics primitives that draw the image will

incrementally paint on the screen.

Parameters:
url - an absolute URL giving the base location of the image
name - the location of the image, relative to the wl argument
Returns:
the image at the specified UREL
See Also:

Image

27

Key Points

" Software Construction Techniques
- Creating Understandable Code

® Source Code Layout

® Naming Mechanism

- Source Code Organization
® Methods

® (lasses

- Code Documentation

28

References

= Tan Sommetrville, “Software Engineering”, 10 Edition, Addison-Wesley, 2015.

= R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,
2005.

Course Topics

+ Intreduction
+Seftware Process Meodels
Reausi B :
+ Moedeling
* Software Construction Techniques
* Testing
* Project Management

* Refactoring
e Ethical Issues

	Software Construction
	Course Topics
	Slide Number 3
	Software Construction
	Introduction
	Software Construction Activities
	Software Construction Fundamentals
	Minimizing Complexity
	Minimizing Complexity
	Anticipating Change
	Constructing for verification
	Reuse
	Standards in Construction
	Software Construction Metaphor
	1/3 Creating Understandable Code	
	 Source Code Layout
	Naming Mechanism
	Naming Mechanism
	2/3: Source Code Organization
	2/3: Source Code Organization (cont.)
	3/3 Code Documentation
	3/3 Code Documentation (cont.)
	3/3 Code Documentation (cont.)
	Slide Number 24
	Code Documentation: javadoc
	Code Documentation: javadoc output
	Key Points
	References
	Course Topics

