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Course Topics
• Introduction
• Software Process Models
• Requirements Engineering 
• Modeling
• Software Construction Techniques 
• Testing
• Project Management
• Refactoring
• Ethical Issues
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Lecture Objectives
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Software Construction 
Fundamentals
- Creating Understandable Code
- Source Code Organization
- Code Documentations



Software Construction

 What is Software Construction?
- In general “construction” refers to the hands-on part of creating 

something.

- Software Construction can be defined as detailed creation of working,
meaningful software through a combination of coding, verification, unit 
testing, integration testing, and debugging.

- Construction is also sometimes known as “coding” or “programming.”
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Introduction

 Software construction closely tied to
- Software design
- Software testing

Design

Construction

Testing
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Software Construction Activities
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Software Construction Fundamentals

 The fundamentals of software construction include:
- Minimizing complexity 

- Anticipating change 

- Constructing for verification 

- Standards in construction
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Minimizing Complexity

 Humans are severely limited in our ability to hold complex
information in our working memories

 As a result, minimizing complexity is one the of strongest drivers
in software construction

 Need to reduce complexity throughout the lifecycle

 As functionality increases, so does complexity
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Minimizing Complexity

 Accomplished through use of standards

 Examples:
- J2EE for complex, distributed Java applications
- UML for modeling all aspects of complex systems
- High-level programming languages such as C++ and Java
- Source code formatting rules to aid readability
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Anticipating Change

 Software changes over time

 Anticipation of change affect how software is constructed

 This can effect
- Use of control structures
- Handling of errors
- Source code organization
- Code documentation
- Coding standards
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Constructing for verification 

 Construct software that allows bugs to be easily found and fixed

 Examples:
- Enforce coding standards 

• Helps support code reviews
- Unit testing
- Organizing code to support automated testing
- Restricted use of complex or hard-to-understand language structures

11



Reuse

 In software construction, typical assets that are reused include
libraries, modules, components, source code, and commercial off-
the-shelf (COTS) assets.

 Reuse is best practiced systematically, according to a well-defined,
repeatable process.

 Systematic reuse can enable significant software productivity,
quality, and cost improvements.
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Standards in Construction

 Standards which directly affect construction issues include:
- Programming languages

• E.g. standards for languages like Java and C++

- Communication methods 
• E.g. standards for document formats and contents

- Platforms
• E.g. programmer interface standards for operating system calls, J2EE

- Tools
• E.g. diagrammatic standards for notations like the Unified Modeling Language
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Software Construction Metaphor

 The letter-writing metaphor suggests that the software process relies
on expensive trial and error rather than careful planning and
design.
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1/3 Creating Understandable Code

 Naming

 Source Code
Layout
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Source Code Layout

 Layout Techniques
- White Space

• Usewhitespacetoenhancereadability

- Grouping
• Paragraph of code should contain statements that accomplish a single task and that are 

related to each other

- Blank lines
• Separate unrelated statements from each other using blank line.

- Indentation
• Use indentation to show the logical structure of a program.

- Parenthesis
• Use parentheses to clarify expressions that involve more than two terms to add clarity.
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Naming Mechanism

 Previous Example with Meaningful Names

 Naming is a tedious job.

 But Naming Conventions help when
- Multiple programmers are working on a project
- You plan to turn a program over to another programmer for modifications 

and maintenance
- Your program is so large that you can’t hold the whole thing in your mind 

at once and must think about it in pieces
- You have a lot of unusual terms that are common on a project and want to 

have standard terms or abbreviations to use in coding
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Naming Mechanism

 Name fully and accurately describe the entity the variable
represents.
- A variable that contains the current interest rate is better named rate or 

interestRate than r or x.

 Follow Language-Specific Conventions
- For example in Java

• i and j are integer indexes
• Constants are in ALL_CAPS separated by underscores
• Class and interface names capitalize the first letter of each word, including the first—for 

example, ClassOrInterfaceName.
• Variable and method names use lowercase for the first word, with the first letter of each 

following word capitalized—for example, variableOrRoutineName.

18



2/3: Source Code Organization

 Typically organized into statements, methods, classes and
packages.

 Important questions is when to create a method, a class or a
package.
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2/3: Source Code Organization (cont.)

 When to create a Method?
- Reduce complexity
- Make a section of code readable
- Avoid duplicate code
- Improve performance

 When to create a Class?
- You can hide implementation details
- Changes don’t affect the whole program
- You don’t have to pass data all over your program
- You’re able to work with real-world entities rather than with low-level 

implementation structures
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3/3 Code Documentation

 Why people don’t write comments?
- They think their code is clearer than it could possibly be.
- They think that other programmers are far more interested in their code 

than they really are.
- They are lazy.
- They are afraid someone else might figure out how their code works.
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3/3 Code Documentation (cont.)

 Explain the code’s intent or summarize what the code does,
rather than just repeating the code

 Avoid end line comments
- They make the statement lengthier and intermingle with the code
- Use end line comments only with data declarations

 Comments should focus on why rather than how.

 Avoid redundant, extraneous and self-indulgent comments.

 Avoid abbreviations in comments
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3/3 Code Documentation (cont.)

 Use commenting style that allows comments to be easily modified

 Keep comments clear, correct and up to date.

 Finally – the beginning of a file, class and a routine should always
be commented with its purpose.
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Example of code comments !!



Code Documentation: javadoc

 javadoc.exe: documentation tools can be very handy
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Code Documentation: javadoc output 
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Key Points

 Software Construction Techniques
- Creating Understandable Code

• Source Code Layout
• Naming Mechanism

- Source Code Organization
• Methods
• Classes

- Code Documentation 
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