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Course Topics

• Introduction

• Software Process Models

• Requirements Engineering 

• Modeling

• Programming Languages

• Software Construction Techniques 

• Testing

• Refactoring

• Project Management

• Ethical Issues



Lecture Objectives
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Software Dual Rule

Software Vs. Hardware

Software Quality



Software’s Dual Role

 Software is a product
- Delivers computing potential

- Software is an information transformer: Produces, manages, acquires, 

modifies, displays, or transmits information
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Dual Role

Product
Vehicle for delivering other 

products



Software’s Dual Role

 Software is a vehicle for delivering a product

- Basis for the controls of the computer (e.g. operating systems)

- Communication of Information (e.g. networking software)

- Creation and control of other software (e.g. software tools and 

environments)
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Software Applications

 No clear breakdown of application types, following are some
generally accepted overlapping categories.

1. Stand-alone applications: run on a local computer and do not need

to be connected to a network (e.g., office applications, photo

manipulation software).

2. Interactive transaction-based applications: execute on a remote

computer and accessed by users from their own PCs/terminals.

3. Embedded control systems: software control systems that control

and manage hardware devices (e.g., software in a mobile phone,

software in a microwave oven).

4. Batch processing systems: business systems designed to process data

in large batches (e.g., as phone billing systems, and salary

payment systems)
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Software Applications

5. Entertainment systems: Primarily for personal use and intended to

entertain the user (e.g., games)

6. Systems for modeling and simulation: Developed by scientists and

engineers to model physical processes. They are often

computationally intensive (e.g., molecular biology, astronomy, etc.)

7. Data collection systems: Collect data from their environment using a

set of sensors and send that data to other systems for processing.

8. Systems of systems: Systems composed of a number of other

software systems. Some of these may be generic software products,

such as a spreadsheet program.
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Software Characteristics

 Software is developed or engineered; it is not

manufactured in the classical sense
- Different from hardware manufacturing process.

- Software is custom built

- However, software industry is moving towards component-based 

development

 Software does not wear out,
- but it does deteriorate
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Hardware Failure

 Bathtub curve
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Time

Failure Rate

Wear OutInfant Mortality

Hardware components suffer from the cumulative effects of 

dust, vibration, abuse, temperature extremes, etc.



Software Failure (Ideal)

 Idealized curve (oversimplified)
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Time

Failure Rate

Infant Mortality

Undiscovered defects will cause high failure rates early in the 

life of a program. These are corrected and the curve flattens.



Software Failure (Realistic)
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Time

Failure Rate

Actual

Change

Increased Failure

Rate due to side Effects

Before the curve can return to the original steady-state failure rate, 

another change is requested, causing the curve to spike again. 

Slowly, the minimum failure rate level begins to rise—the software is 

deteriorating due to change.



Software Quality

 It is not enough just to produce software
- Software should deliver the required functionality

 Software should have the appropriate product

characteristics
- The relative importance of these characteristics varies from product to 

product
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Software Quality Attributes

 Usability
- Users can learn the software to get their job done easily and fast.

 Efficiency
- It doesn‘t waste resources such as CPU time and memory

 Dependability
- Software must be trustworthy; e.g. reliability, security, safety

 Maintainability
- It can be easily changed

 Reusability
- Its parts can be used in other projects, so reprogramming is not needed
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Software Quality and Stakeholders
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QUALITY 

SOFTWARE

Developer:

easy to design; 

easy to maintain; 

easy to reuse its parts

User: 

easy to learn; 

efficient to use; 

helps get work done

Customer (those who pay):

solves problems at 

an acceptable cost in 

terms of money paid and 

resources used

Development manager:

sells more and 

pleases customers 

while costing less 

to develop and maintain



Software Quality Attribute

 Usability
- Software must be accepted by the users for what it was designed.

- Appropriate user interface & adequate documentation.
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http://flappybird.io/

http://flappybird.io/
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Software Quality Attribute

 Efficiency
- Software should not make wasteful use of system resources

- e.g.,  CPU, Memory, Drive space etc.
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Software Quality Attribute

 Dependability
- Software must be trustworthy; e.g. reliability, security, safety, 

availability.

 Principal dimensions of dependability are:
- Availability

• System ability to deliver services when requested

- Reliability
• System does what it is required to do without failing

- Safety
• System’s ability to operate, normally or abnormally, without danger of causing human injury or 

death and without damage to the system’s environment

- Security
• System ability to protect itself against intrusion
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Software Quality Attribute

 Dependability is important for:
- Safety-critical systems

• Failure results in loss of life, injury or damage to the environment

• E.g. Chemical plant protection system

- Mission-critical systems
• Failure results in failure of some goal-directed activity

• E.g. Spacecraft navigation system

- Business-critical systems
• Failure results in high economic losses

• E.g. Customer accounting system in a bank
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Software Quality Attribute

 Maintainability
- Software should be written in such a way so that it can evolve 

to meet the changing needs of customers. 
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Complex 

But

Organized and 

Maintainable



Software Quality: Conflicts and Objectives

 Characteristics relate to each other

 The different qualities can conflict
- Increasing efficiency can reduce maintainability or reusability
- Increasing usability can reduce efficiency

 Setting objectives for quality is a key engineering

activity
- You then design to meet the objectives
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Complex Trade-Offs



Discussion

 List important quality attributes for
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Key Points

 Software’s dual roles
- Software is a product; and 

- Software is a vehicle for delivering a product

 Software does not wear out,
- but it does deteriorate

 It is not enough just to produce software
- Software should deliver the required functionality

- Software characteristics also relate to each other
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Read
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Chapter 1
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