
Class Diagram

Lecture 12

SWE 205: Introduction to Software Engineering

Course Topics

• Introduction

• Software Process Models

• Requirements Engineering

• Modeling

• Programming Languages

• Software Construction Techniques

• Testing

• Project Management

• Refactoring

• Ethical Issues

Lecture Objectives

3

Modeling Classes

Associations

Generalizations

Interfaces

What is UML?

The Unified Modelling Language is a standard graphical language

for modelling object oriented software

- Developed by Rumbaugh, Booch and Jacobson

- Based on earlier languages they had each developed

- They worked together at the Rational Software Corporation, later bought

by IBM

• Much development of UML has been done at IBM Rational Ottawa

- In 1997 the Object Management Group (OMG) started the process of

UML standardization

4

UML diagrams

5

Essentials of UML Class Diagrams

The main symbols shown on class diagrams are:
- Classes

• represent the types of data themselves

- Associations

• represent linkages between instances of classes

- Attributes

• are simple data found in classes and their instances

- Operations

• represent the abstract functions performed by the classes and

their instances, as well as specific methods implementing these

- Generalizations

• group classes into inheritance hierarchies

6

Classes

A class is simply represented as a box with the name of the class

inside
- The diagram may also show the attributes and operations

- The complete signature of an operation is:

operationName(parameterName: parameterType …): returnType

7

Associations and Multiplicity

An association is used to show how two classes are related to each

other
- Symbols indicating multiplicity are shown at each end of the association

8

Exactly one 1

Zero or more

(unlimited)
* (0..*)

One or more 1..*

Zero or one

(optional

association)

0..1

Specified range 2..4

Multiple, disjoint

ranges
2, 4..6, 8..10

Labelling associations

- Each association can be labelled, to make explicit the nature of the

association

9

Analyzing and validating associations

- Many-to-one

• A company has many employees,

• An employee can only work for one company.

• A company can have zero employees

• It is not possible to be an employee unless you work for a company

10

*
worksFor

Employee Company1

- Many-to-many
• An assistant can work for many managers

• A manager can have many assistants

• Managers can have a group of assistants

• Some managers might have zero assistants.

• Is it possible for an assistant to have, perhaps temporarily, zero

managers?

11

*

supervisor

*****1..*
Assistant Manager

Analyzing and validating associations

Analyzing and validating associations

- One-to-one

• For each company, there is exactly one board of directors

• A board is the board of only one company

• A company must always have a board

• A board must always be of some company

12

Company BoardOfDirectors11

Analyzing and validating associations

Avoid unnecessary one-to-one associations

Avoid this

do this

13

A more complex example (1)

- A booking is always for exactly one passenger

• no booking with zero passengers

• a booking could never involve more than one passenger.

- A Passenger can have any number of Bookings

• a passenger could have no bookings at all

• a passenger could have more than one booking

- The frame around this diagram is an optional feature that any UML 2.0

diagram may possess.

14

A more complex example (2)

15

Directionality in associations

• Associations are by default bi-directional

• It is possible to limit the direction of an association by adding an

arrow at one end

16

Generalization

Specializing a superclass into two or more subclasses
- A generalization set is a labeled group of generalizations with a common

superclass

- The label (sometimes called the discriminator) describes the criteria used in

the specialization

17

Generalization Example

18

More Advanced Features: Aggregation

- Aggregations are special associations that represent

‘part-whole’ relationships.

• The ‘whole’ side is often called the assembly or the aggregate

• This symbol is a shorthand notation association named isPartOf

19

When to use an aggregation

As a general rule, you can mark an association as

an aggregation if the following are true:
- You can state that

• the parts ‘are part of’ the aggregate

• or the aggregate ‘is composed of’ the parts

- When something owns or controls the aggregate, then

they also own or control the parts

20

Composition

- A composition is a strong kind of aggregation

• if the aggregate is destroyed, then the parts are destroyed as well

- Two alternatives for addresses

21

Composition vs. Aggregation

22

Aggregation hierarchy

23

Interfaces

 An interface is a bit like a class, except that an interface can only

contain method signatures and fields.

 An interface cannot contain an implementation of the methods,

only the signature (name, parameters and exceptions) of the

method.

 A class can have an actual instance of its type, whereas an

interface must have at least one class to implement

 An interface can be realized by many classes.

 A class may realize many interfaces.

24

LinkedList
<<interface>>

List

LinkedList List

Suggested sequence of activities

- Identify a first set of candidate classes

- Add associations and attributes

- Find generalizations

- List the main responsibilities of each class

- Decide on specific operations

- Iterate over the entire process until the model is satisfactory
• Add or delete classes, associations, attributes, generalizations,

responsibilities or operations

• Identify interfaces

• Apply design patterns (Chapter 6)

Don’t be too disorganized. Don’t be too rigid either.

25

Read

26

Chapter 5 and 7

References

 Ian Sommerville, “Software Engineering”, 10th Edition, Addison-Wesley, 2015.

 Timothy C. Lethbridge and Robert Laganière, “Object-Oriented Software Engineering: Practical

Software Development using UML and Java”, 2nd Edition, McGraw Hill, 2001.

 R. S. Pressman, Software Engineering: A Practitioner’s Approach, 10th Edition, McGraw-Hill,

2005.

27

